233 research outputs found

    Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis

    Get PDF
    BACKGROUND: Blood biomarkers of neuronal damage could facilitate clinical management of and therapeutic development for Huntington's disease. We investigated whether neurofilament light protein NfL (also known as NF-L) in blood is a potential prognostic marker of neurodegeneration in patients with Huntington's disease. METHODS: We did a retrospective analysis of healthy controls and carriers of CAG expansion mutations in HTT participating in the 3-year international TRACK-HD study. We studied associations between NfL concentrations in plasma and clinical and MRI neuroimaging findings, namely cognitive function, motor function, and brain volume (global and regional). We used random effects models to analyse cross-sectional associations at each study visit and to assess changes from baseline, with and without adjustment for age and CAG repeat count. In an independent London-based cohort of 37 participants (23 HTT mutation carriers and 14 controls), we further assessed whether concentrations of NfL in plasma correlated with those in CSF. FINDINGS: Baseline and follow-up plasma samples were available from 97 controls and 201 individuals carrying HTT mutations. Mean concentrations of NfL in plasma at baseline were significantly higher in HTT mutation carriers than in controls (3·63 [SD 0·54] log pg/mL vs 2·68 [0·52] log pg/mL, p<0·0001) and the difference increased from one disease stage to the next. At any given timepoint, NfL concentrations in plasma correlated with clinical and MRI findings. In longitudinal analyses, baseline NfL concentration in plasma also correlated significantly with subsequent decline in cognition (symbol-digit modality test r=–0·374, p<0·0001; Stroop word reading r=–0·248, p=0·0033), total functional capacity (r=–0·289, p=0·0264), and brain atrophy (caudate r=0·178, p=0·0087; whole-brain r=0·602, p<0·0001; grey matter r=0·518, p<0·0001; white matter r=0·588, p<0·0001; and ventricular expansion r=–0·589, p<0·0001). All changes except Stroop word reading and total functional capacity remained significant after adjustment for age and CAG repeat count. In 104 individuals with premanifest Huntington's disease, NfL concentration in plasma at baseline was associated with subsequent clinical onset during the 3-year follow-up period (hazard ratio 3·29 per log pg/mL, 95% CI 1·48–7·34, p=0·0036). Concentrations of NfL in CSF and plasma were correlated in mutation carriers (r=0·868, p<0·0001). INTERPRETATION: NfL in plasma shows promise as a potential prognostic blood biomarker of disease onset and progression in Huntington's disease

    AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington's disease.

    Get PDF
    Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. To date, there is no treatment to halt or reverse the course of HD. Lowering of either total or only the mutant HTT expression is expected to have therapeutic benefit. This can be achieved by engineered micro (mi)RNAs targeting HTT transcripts and delivered by an adeno-associated viral (AAV) vector. We have previously showed a miHTT construct to induce total HTT knock-down in Hu128/21 HD mice, while miSNP50T and miSNP67T constructs induced allele-selective HTT knock-down in vitro. In the current preclinical study, the mechanistic efficacy and gene specificity of these selected constructs delivered by an AAV serotype 5 (AAV5) vector was addressed using an acute HD rat model. Our data demonstrated suppression of mutant HTT messenger RNA, which almost completely prevented mutant HTT aggregate formation, and ultimately resulted in suppression of DARPP-32-associated neuronal dysfunction. The AAV5-miHTT construct was found to be the most efficient, although AAV5-miSNP50T demonstrated the anticipated mutant HTT allele selectivity and no passenger strand expression. Ultimately, AAV5-delivered-miRNA-mediated HTT lowering did not cause activation of microglia or astrocytes suggesting no immune response to the AAV5 vector or therapeutic precursor sequences. These preclinical results suggest that using gene therapy to knock-down HTT may provide important therapeutic benefit for HD patients and raised no safety concerns, which supports our ongoing efforts for the development of an RNA interference-based gene therapy product for HD

    Shades of empire: police photography in German South-West Africa

    Get PDF
    This article looks at a photographic album produced by the German police in colonial Namibia just before World War I. Late 19th- and early 20th-century police photography has often been interpreted as a form of visual production that epitomized power and regimes of surveillance imposed by the state apparatuses on the poor, the criminal and the Other. On the other hand police and prison institutions became favored sites where photography could be put at the service of the emergent sciences of the human body—physiognomy, anthropometry and anthropology. While the conjuncture of institutionalized colonial state power and the production of scientific knowledge remain important for this Namibian case study, the article explores a slightly different set of questions. Echoing recent scholarship on visuality and materiality the photographic album is treated as an archival object and visual narrative that was at the same time constituted by and constitutive of material and discursive practices within early 20th-century police and prison institutions in the German colony. By shifting attention away from image content and visual codification alone toward the question of visual practice the article traces the ways in which the photo album, with its ambivalent, unstable and uncontained narrative, became historically active and meaningful. Therein the photographs were less informed by an abstract theory of anthropological and racial classification but rather entrenched with historically contingent processes of colonial state constitution, socioeconomic and racial stratification, and the institutional integration of photography as a medium and a technology into colonial policing. The photo album provides a textured sense of how fragmented and contested these processes remained throughout the German colonial period, but also how photography could offer a means of transcending the limits and frailties brought by the realities on the ground.International Bibliography of Social Science

    Activity or connectivity? A randomized controlled feasibility study evaluating neurofeedback training in Huntington's disease

    Get PDF
    Non-invasive methods, such as neurofeedback training, could support cognitive symptom management in Huntington’s disease by targeting brain regions whose function is impaired. The aim of our single-blind, sham-controlled study was to collect rigorous evidence regarding the feasibility of neurofeedback training in Huntington’s disease by examining two different methods, activity and connectivity real-time functional MRI neurofeedback training. Thirty-two Huntington’s disease gene-carriers completed 16 runs of neurofeedback training, using an optimized real-time functional MRI protocol. Participants were randomized into four groups, two treatment groups, one receiving neurofeedback derived from the activity of the supplementary motor area, and another receiving neurofeedback based on the correlation of supplementary motor area and left striatum activity (connectivity neurofeedback training), and two sham control groups, matched to each of the treatment groups. We examined differences between the groups during neurofeedback training sessions and after training at follow-up sessions. Transfer of training was measured by measuring the participants’ ability to upregulate neurofeedback training target levels without feedback (near transfer), as well as by examining change in objective, a priori defined, behavioural measures of cognitive and psychomotor function (far transfer) before and at 2 months after training. We found that the treatment group had significantly higher neurofeedback training target levels during the training sessions compared to the control group. However, we did not find robust evidence of better transfer in the treatment group compared to controls, or a difference between the two neurofeedback training methods. We also did not find evidence in support of a relationship between change in cognitive and psychomotor function and learning success. We conclude that although there is evidence that neurofeedback training can be used to guide participants to regulate the activity and connectivity of specific regions in the brain, evidence regarding transfer of learning and clinical benefit was not robust

    Activity or Connectivity? Evaluating neurofeedback training in Huntington's disease

    Get PDF
    Non-invasive methods, such as neurofeedback training (NFT), could support cognitive symptom management in Huntington’s disease (HD) by targeting brain regions whose function is impaired. The aim of our single-blind, sham-controlled study was to collect rigorous evidence regarding the feasibility of NFT in HD by examining two different methods, activity and connectivity real-time fMRI NFT. Thirty-two HD gene-carriers completed 16 runs of NFT training, using an optimized real-time fMRI protocol. Participants were randomized into four groups, two treatment groups, one receiving neurofeedback derived from the activity of the Supplementary Motor Area (SMA), and another receiving neurofeedback based on the correlation of SMA and left striatum activity (connectivity NFT), and two sham control groups, matched to each of the treatment groups. We examined differences between the groups during NFT training sessions and after training at follow-up sessions. Transfer of training was measured by measuring the participants’ ability to upregulate NFT target levels without feedback (near transfer), as well as by examining change in objective, a-priori defined, behavioural measures of cognitive and psychomotor function (far transfer) before and at 2 months after training. We found that the treatment group had significantly higher NFT target levels during the training sessions compared to the control group. However, we did not find robust evidence of better transfer in the treatment group compared to controls, or a difference between the two NFT methods. We also did not find evidence in support of a relationship between change in cognitive and psychomotor function and NFT learning success. We conclude that although there is evidence that NFT can be used to guide participants to regulate the activity and connectivity of specific regions in the brain, evidence regarding transfer of learning and clinical benefit was not robust. Although the intervention is non-invasive, given the costs and absence of reliable evidence of clinical benefit, we cannot recommend real-time fMRI NFT as a potential intervention in HD

    Double diffraction imaging of X-ray induced structural dynamics in single free nanoparticles

    Full text link
    Because of their high photon flux, X-ray free-electron lasers (FEL) allow to resolve the structure of individual nanoparticles via coherent diffractive imaging (CDI) within a single X-ray pulse. Since the inevitable rapid destruction of the sample limits the achievable resolution, a thorough understanding of the spatiotemporal evolution of matter on the nanoscale following the irradiation is crucial. We present a technique to track X-ray induced structural changes in time and space by recording two consecutive diffraction patterns of the same single, free-flying nanoparticle, acquired separately on two large-area detectors opposite to each other, thus examining both the initial and evolved particle structure. We demonstrate the method at the extreme ultraviolet (XUV) and soft X-ray Free-electron LASer in Hamburg (FLASH), investigating xenon clusters as model systems. By splitting a single XUV pulse, two diffraction patterns from the same particle can be obtained. For focus intensities of about 21012W/cm22\cdot10^{12}\,\text{W/cm}^2 we observe still largely intact clusters even at the longest delays of up to 650 picoseconds of the second pulse, indicating that in the highly absorbing systems the damage remains confined to one side of the cluster. Instead, in case of five times higher flux, the diffraction patterns show clear signatures of disintegration, namely increased diameters and density fluctuations in the fragmenting clusters. Future improvements to the accessible range of dynamics and time resolution of the approach are discussed

    Apathy predicts rate of cognitive decline over 24 months in premanifest Huntington's disease

    Get PDF
    Background Cognitive impairment is a core feature of Huntington's disease (HD), however, the onset and rate of cognitive decline is highly variable. Apathy is the most common neuropsychiatric symptom of HD, and is associated with cognitive impairment. The aim of this study was to investigate apathy as a predictor of subsequent cognitive decline over 2 years in premanifest and early HD, using a prospective, longitudinal design. Methods A total of 118 premanifest HD gene carriers, 111 early HD and 118 healthy control participants from the multi-centre TRACK-HD study were included. Apathy symptoms were assessed at baseline using the apathy severity rating from the Short Problem Behaviours Assessment. A composite of 12 outcome measures from nine cognitive tasks was used to assess cognitive function at baseline and after 24 months. Results In the premanifest group, after controlling for age, depression and motor signs, more apathy symptoms predicted faster cognitive decline over 2 years. In contrast, in the early HD group, more motor signs, but not apathy, predicted faster subsequent cognitive decline. In the control group, only older age predicted cognitive decline. Conclusions Our findings indicate that in premanifest HD, apathy is a harbinger for cognitive decline. In contrast, after motor onset, in early diagnosed HD, motor symptom severity more strongly predicts the rate of cognitive decline.Neurological Motor Disorder
    corecore