4,459 research outputs found
Automated DNA Motif Discovery
Ensembl's human non-coding and protein coding genes are used to automatically
find DNA pattern motifs. The Backus-Naur form (BNF) grammar for regular
expressions (RE) is used by genetic programming to ensure the generated strings
are legal. The evolved motif suggests the presence of Thymine followed by one
or more Adenines etc. early in transcripts indicate a non-protein coding gene.
Keywords: pseudogene, short and microRNAs, non-coding transcripts, systems
biology, machine learning, Bioinformatics, motif, regular expression, strongly
typed genetic programming, context-free grammar.Comment: 12 pages, 2 figure
Recommended from our members
Electromagnetic "particle-in-cell" plasma simulation
''PIC'' simulation tracks particles through electromagnetic fields calculated self-consistently from the charge and current densities of the particles themselves, external sources, and boundaries. Already used extensively in plasma physics, such simulations have become useful in the design of accelerators and their r.f. sources. 5 refs
Vlasov Simulations of Trapping and Inhomogeneity in Raman Scattering
We study stimulated Raman scattering (SRS) in laser-fusion conditions with
the Eulerian Vlasov code ELVIS. Back SRS from homogeneous plasmas occurs in
sub-picosecond bursts and far exceeds linear theory. Forward SRS and re-scatter
of back SRS are also observed. The plasma wave frequency downshifts from the
linear dispersion curve, and the electron distribution shows flattening. This
is consistent with trapping and reduces the Landau damping. There is some
acoustic () activity and possibly electron acoustic scatter.
Kinetic ions do not affect SRS for early times but suppress it later on. SRS
from inhomogeneous plasmas exhibits a kinetic enhancement for long density
scale lengths. More scattering results when the pump propagates to higher as
opposed to lower density.Comment: 4 pages, 6 figures. Submitted to "Journal of Plasmas Physics" for the
conference proceedings of the 19th International Conference on Numerical
Simulation of Plasma
Hearing Reports under the Environmental Conservation Law: Their Function, Preparation, and Importance
Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter
1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic
enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in
regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is
transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73,
025401 (2006)]. For the first time, a low phase velocity electron acoustic wave
(EAW) is seen developing from the self-consistent Raman physics. Backscatter of
the pump laser off the EAW fluctuations is reported and referred to as electron
acoustic Thomson scatter. This light is similar in wavelength to, although much
lower in amplitude than, the reflected light between the pump and SRBS
wavelengths observed in single hot spot experiments, and previously interpreted
as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev.
Lett. 87, 155001 (2001)]. The EAW is strongest well below the phase-matched
frequency for electron acoustic scatter, and therefore the EAW is not produced
by it. The beating of different beam acoustic modes is proposed as the EAW
excitation mechanism, and is called beam acoustic decay. Supporting evidence
for this process, including bispectral analysis, is presented. The linear
electrostatic modes, found by projecting the numerical distribution function
onto a Gauss-Hermite basis, include beam acoustic modes (some of which are
unstable even without parametric coupling to light waves) and a strongly-damped
EAW similar to the observed one. This linear EAW results from non-Maxwellian
features in the electron distribution, rather than nonlinearity due to electron
trapping.Comment: 15 pages, 16 figures, accepted in Physics of Plasmas (2006
Recommended from our members
A high-wavenumber boundary-element method for an acoustic scattering problem
In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree ) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval , which only requires the discretization of , we show theoretically and experimentally that the error in computing the acoustic field on is , where is the number of degrees of freedom and is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems
Recommended from our members
Modeling the longitudinal wall impedance instability in heavy ion beams using an R-C pic code
The effects of the longitudinal wall impedance instability in a heavy ion beam are of great interest for heavy ion fusion drivers. We are studying this instability using the R-Z thread of the WARP PIC code. We describe the code and our model of the impedance due to the accelerating modules of the induction LINAC as a resistive wall. We present computer simulations which illustrate this instability. 2 refs., 2 figs., 1 tab
Benchmarking genetically improved BarraCUDA on epigenetic methylation NGS datasets and nVidia GPUs
BarraCUDA uses CUDA graphics cards to map DNA reads to the human genome. Previously its software source code was genetically improved for short paired end next generation sequences. On longer noisy epigenetics strings using nVidia Titan and twin Tesla K40 the same GI-ed code is more than 3 times faster than bwa-meth on an 8 core CPU
- …
