289 research outputs found
Solar Impact on Climate: Modeling the Coupling Between the Middle and the Lower Atmosphere
Solar variability influences the earth's atmosphere on different time scales. In particular, the impact of the 11-year solar cycle is of interest as it provides the major contribution to natural climate variability. Observations show clear 11-year variations in meteorological variables such as temperature or geopotential height from the upper atmosphere down to the troposphere and the earth's surface. In this paper the mechanisms will be discussed which are assumed to be responsible for the downward transfer of the solar signal within the atmosphere. These involve radiative, dynamical and chemical processes which have been studied in detail in model simulations and will be presented here
Solar impact on the lower mesospheric subtropical jet: A comparative study with general circulation model simulations
The seasonal and interannual variation in the lower mesospheric subtropical jet (LMSJ) and their dependence on the 11-year solar cycle are studied by comparing observational data with simulations by two general circulation models. In the model simulations, a strengthening of the LMSJs is found in both hemispheres during the winter under the solar maximum condition, similar to the observation. However the model responses are substantially smaller except for one case in the southern hemisphere. It is also found that the stronger LMSJ due to an enhanced solar forcing appears during the period which follows an increasing period of interannual variation. Analysis of the observed seasonal march of the LMSJ in each year shows two different regimes of behavior. For a successful simulation, the model should realistically reproduce the observed interannual variability as well as the climatological mean
Climatological features of stratospheric streamers in the FUB-CMAM with increased horizontal resolution
International audienceThe purpose of this study is to investigate horizontal transport processes in the winter stratosphere using data with a resolution relevant for chemistry and climate modeling. For this reason the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM) with its model top at 83 km altitude, increased horizontal resolution T42 and the semi-Lagrangian transport scheme for advecting passive tracers is used. A new approach of this paper is the classification of specific transport phenomena within the stratosphere into tropical-subtropical streamers (e.g. Offermann et al., 1999) and polar vortex extrusions hereafter called polar vortex streamers. To investigate the role played by these large-scale structures on the inter-annual and seasonal variability of transport processes in northern mid-latitudes, the global occurrence of such streamers was calculated based on a 10-year model climatology, concentrating on the existence of the Arctic polar vortex. For the identification and counting of streamers, the new method of zonal anomaly was chosen. The analysis of the months October-May yielded a maximum occurrence of tropical-subtropical streamers during Arctic winter and spring in the middle and upper stratosphere. Synoptic maps revealed highest intensities in the subtropics over East Asia with a secondary maximum over the Atlantic in the northern hemisphere. Furthermore, tropical-subtropical streamers exhibited a higher occurrence than polar vortex streamers, indicating that the subtropical barrier is more permeable than the polar vortex barrier (edge) in the model, which is in good correspondence with observations (e.g. Plumb, 2002; Neu et al., 2003). Interesting for the total ozone decrease in mid-latitudes is the consideration of the lower stratosphere for tropical-subtropical streamers and the stratosphere above ~20 km altitude for polar vortex streamers, where strongest ozone depletion is observed at polar latitudes (WMO, 2003). In the lower stratosphere the FUB-CMAM simulated a climatological maximum of 10% occurrence of tropical-subtropical streamers over East-Asia/West Pacific and the Atlantic during early- and mid-winter. The results of this paper demonstrate that stratospheric streamers e.g. large-scale, tongue-like structures transporting tropical-subtropical and polar vortex air masses into mid-latitudes occur frequently during Arctic winter. They can therefore play a significant role on the strength and variability of the observed total ozone decrease at mid-latitudes and should not be neglected in future climate change studies
Future changes in the stratosphere-to-troposphere ozone mass flux and the contribution from climate change and ozone recovery
Using a state-of-the-art chemistry–climate model we investigate the future change in stratosphere–troposphere exchange (STE) of ozone, the drivers of this change, as well as the future distribution of stratospheric ozone in the troposphere. Supplementary to previous work, our focus is on changes on the monthly scale. The global mean annual influx of stratospheric ozone into the troposphere is projected to increase by 53 % between the years 2000 and 2100 under the RCP8.5 greenhouse gas scenario. The change in ozone mass flux (OMF) into the troposphere is positive throughout the year with maximal increase in the summer months of the respective hemispheres. In the Northern Hemisphere (NH) this summer maximum STE increase is a result of increasing greenhouse gas (GHG) concentrations, whilst in the Southern Hemisphere(SH) it is due to equal contributions from decreasing levels of ozone depleting substances (ODS) and increasing GHG concentrations. In the SH the GHG effect is dominating in the winter months. A large ODS-related ozone increase in the SH stratosphere leads to a change in the seasonal breathing term which results in a future decrease of the OMF into the troposphere in the SH in September and October. The resulting distributions of stratospheric ozone in the troposphere differ for the GHG and ODS changes due to the following: (a) ozone input occurs at different regions for GHG- (midlatitudes) and ODS-changes (high latitudes); and (b) stratospheric ozone is more efficiently mixed towards lower tropospheric levels in the case of ODS changes, whereas tropospheric ozone loss rates grow when GHG concentrations rise. The comparison between the moderate RCP6.0 and the extreme RCP8.5 emission scenarios reveals that the annual global OMF trend is smaller in the moderate scenario, but the resulting change in the contribution of ozone with stratospheric origin (O3s) to ozone in the troposphere is of comparable magnitude in both scenarios. This is due to the larger tropospheric ozone precursor emissions and hence ozone production in the RCP8.5 scenario
Chemical effects in 11-year solar cycle simulations with the Freie Universität Berlin Climate Middle Atmosphere Model with online chemistry (FUB-CMAM-CHEM)
The impact of 11-year solar cycle variations on stratospheric ozone (O3) is studied with the Freie Universität Berlin Climate Middle Atmosphere Model with interactive chemistry (FUB-CMAM-CHEM). To consider the effect of variations in charged particle precipitation we included an idealized NO x source in the upper mesosphere representing relativistic electron precipitation (REP). Our results suggest that the NO x source by particles and its transport from the mesosphere to the stratosphere in the polar vortex are important for the solar signal in stratospheric O3. We find a positive dipole O3 signal in the annual mean, peaking at 40–45 km at high latitudes and a negative O3 signal in the tropical lower stratosphere. This is similar to observations, but enhanced due to the idealized NO x source and at a lower altitude compared to the observed minimum. Our results imply that this negative O3 signal arises partly via chemical effects
Towards a better representation of the solar cycle in general circulation models
We introduce the improved Freie Universität Berlin (FUB) high-resolution radiation scheme FUBRad and compare it to the 4-band standard ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB). Both schemes are validated against the detailed radiative transfer model libRadtran. FUBRad produces realistic heating rate variations during the solar cycle. The SW heating rate response with the FB scheme is about 20 times smaller than with FUBRad and cannot produce the observed temperature signal. A reduction of the spectral resolution to 6 bands for solar irradiance and ozone absorption cross sections leads to a degradation (reduction) of the solar SW heating rate signal by about 20%.
The simulated temperature response agrees qualitatively well with observations in the summer upper stratosphere and mesosphere where irradiance variations dominate the signal.
Comparison of the total short-wave heating rates under solar minimum conditions shows good agreement between FUBRad, FB and libRadtran up to the middle mesosphere (60–70 km) indicating that both parameterizations are well suited for climate integrations that do not take solar variability into account.
The FUBRad scheme has been implemented as a sub-submodel of the Modular Earth Submodel System (MESSy)
Validation of water vapour transport in the tropical tropopause region in coupled Chemistry Climate Models
International audienceIn this study backward trajectories from the tropical lower stratosphere were calculated for the Northern Hemisphere (NH) winters 1995?1996, 1997?1998 (El Niño) and 1998?1999 (La Niña) and summers 1996, 1997 and 1999 using both ERA-40 reanalysis data of the European Centre for Medium-Range Weather Forecast (ECMWF) and coupled chemistry climate model (CCM) data. The calculated trajectories were analyzed to determine the distribution of points where individual air masses encounter the minimum temperature and thus minimum water vapour mixing ratio during their ascent through the tropical tropopause layer (TTL) into the stratosphere. The geographical distribution of these dehydration points and the local conditions there determine the overall water vapour entry into the stratosphere. Results of two CCMs are presented: the ECHAM4.L39(DLR)/CHEM (hereafter: E39/C) from the German Aerospace Center (DLR) and the Freie Universität Berlin Climate Middle Atmosphere Model with interactive chemistry (hereafter: FUB-CMAM-CHEM). In the FUB-CMAM-CHEM model the minimum temperatures are overestimated by about 7 K in Northern Hemisphere (NH) winter as well as in NH summer, resulting in too high water vapour entry values compared to ERA-40. However, the geographical distribution of dehydration points is fairly reproduced for NH winter 1995?1996 and 1998?1999 and in all boreal summers. The distribution of dehydration points suggests an influence of the Indian monsoon upon the water vapour transport. The E39/C model displays a temperature bias of about +3 K. Hence, the minimum water vapour mixing ratios are higher relative to ERA-40. The geographical distribution of dehydration points is satisfactory in NH winter 1995?1996 and 1997?1998 with respect to ERA-40. The distribution is not reproduced for the NH winter 1998?1999 (La Niña event) compared to ERA-40. There is excessive mass flux through warm regions e.g. Africa, leading to excessive water vapour flux in the NH winter and summer. The possible influence of the Indian monsoon on the transport is not seen in the boreal summer. Further, the residence times of air parcels in the TTL were derived from the trajectory calculations. The analysis of the residence times reveals that in both CCMs residence times in the TTL are underestimated compared to ERA-40 and the seasonal variation is hardly present
The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle
Heating rate calculations with the FUBRad shortwave (SW) radiation parameterization have been performed to examine the effect of prescribed spectral solar fluxes from the NRLSSI, MPS and IUP data sets on SW heating rates over the 11 year solar cycle 22. The corresponding temperature response is derived from perpetual January General Circulation Model (GCM) simulations with prescribed ozone concentrations. The different solar flux input data sets induce clear differences in SW heating rates at solar minimum, with the established NRLSSI data set showing the smallest solar heating rates. The stronger SW heating in the middle and upper stratosphere in the MPS data warms the summer upper stratosphere by 2 K. Over the solar cycle, SW heating rate differences vary up to 40% between the irradiance data sets, but do not result in a significant change of the solar temperature signal. Lower solar fluxes in the newer SIM data lead to a significantly cooler stratosphere and mesosphere when compared to NRLSSI data for 2007. Changes in SW heating from 2004 to 2007 are however up to six times stronger than for the NRLSSI data.
Key Points:
- Solar minimum and solar cycle differences in SW heating rates and temperature
- Comparison of three spectral solar input data sets for solar cycle 22
- Comparison of the newly compiled SORCE-data with the commonly used NRLSSI-dat
The SAO and Kelvin waves in the EuroGRIPS GCMS and the UK Met. Office analyses
International audienceWe compare the tropical oscillations and planetary scale Kelvin waves in four troposphere-stratosphere climate models and the assimilated dataset produced by the United Kingdom Meteorological Office (UKMO). The comparison has been made in the GRIPS framework "GCM-Reality Intercomparison Project for SPARC", where SPARC is Stratospheric Processes and their Role in Climate, a project of the World Climate Research Program. The four models evaluated are European members of GRIPS: the UKMO Unified Model (UM), the model of the Free University in Berlin (FUB–GCM), the ARPEGE-climat model of the French National Centre for Meteorological Research (CNRM), and the Extended UGAMP GCM (EUGCM) of the Centre for Global Atmospheric Modelling (CGAM). The integrations were performed with different, but annually periodic external conditions (e.g., sea-surface temperature, sea ice, and incoming solar radiation). The structure of the tropical winds and the strengths of the Kelvin waves are examined. In the analyses where the SAO (Semi-Annual Oscillation) and the QBO (Quasi-Biennal Oscillation) are reasonably well captured, the amplitude of these analysed Kelvin waves is close to that observed in independent data from UARS (Upper Atmosphere Research Satellite). In agreement with observations, the Kelvin waves generated in the models propagate into the middle atmosphere as wave packets, consistent with a convective forcing origin. In three of the models, slow Kelvin waves propagate too high and their amplitudes are overestimated in the upper stratosphere and in the mesosphere, the exception is the UM which has weaker waves. None of the modelled waves are sufficient to force realistic eastward phases of the QBO or SAO. Although the SAO is represented by all models, only two of them are able to generate westerlies between 10 hPa and 50 hPa. The importance of the role played in the SAO by unresolved gravity waves is emphasized. Although it exhibits some unrealistic features, the EUGCM, which includes a parametrization of gravity waves with a non-zero phase speed, is able to simulate clear easterly to westerly transitions as well as westerlies with down-ward propagation. Thermal damping is also important for the westerly forcing in the stratosphere
Solar forcing for CMIP6 (v3.2)
Abstract. This paper describes the recommended solar forcing dataset for CMIP6
and highlights changes with respect to CMIP5. The solar forcing is provided
for radiative properties, namely total solar irradiance (TSI), solar spectral
irradiance (SSI), and the F10.7 index as well as particle forcing, including
geomagnetic indices Ap and Kp, and ionization rates to account for effects of
solar protons, electrons, and galactic cosmic rays. This is the first time
that a recommendation for solar-driven particle forcing has been provided for
a CMIP exercise. The solar forcing datasets are provided at daily and monthly
resolution separately for the CMIP6 preindustrial control, historical
(1850–2014), and future (2015–2300) simulations. For the preindustrial control
simulation, both constant and time-varying solar forcing components are
provided, with the latter including variability on 11-year and shorter
timescales but no long-term changes. For the future, we provide a realistic
scenario of what solar behavior could be, as well as an additional extreme
Maunder-minimum-like sensitivity scenario. This paper describes the forcing
datasets and also provides detailed recommendations as to their implementation
in current climate models
- …
