148 research outputs found
Local Isoelectronic Reactivity of Solid Surfaces
The quantity w^N(r) = ( 1/ k^2 T_el)[partial n(r, T_el) / partial
T_el]_(v(r),N) is introduced as a convenient measure of the local isoelectronic
reactivity of surfaces. It characterizes the local polarizability of the
surface and it can be calculated easily. The quantity w^N(r) supplements the
charge transfer reactivity measured e.g. by the local softness to which it is
closely related. We demonstrate the applicability and virtues of the function
w^N(r) for the example of hydrogen dissociation and adsorption on Pd(100).Comment: RevTeX, 13 pages, 3 figures, to appear in Phys. Rev. Let
A new approach to local hardness
The applicability of the local hardness as defined by the derivative of the
chemical potential with respect to the electron density is undermined by an
essential ambiguity arising from this definition. Further, the local quantity
defined in this way does not integrate to the (global) hardness - in contrast
with the local softness, which integrates to the softness. It has also been
shown recently that with the conventional formulae, the largest values of local
hardness do not necessarily correspond to the hardest regions of a molecule.
Here, in an attempt to fix these drawbacks, we propose a new approach to define
and evaluate the local hardness. We define a local chemical potential,
utilizing the fact that the chemical potential emerges as the additive constant
term in the number-conserving functional derivative of the energy density
functional. Then, differentiation of this local chemical potential with respect
to the number of electrons leads to a local hardness that integrates to the
hardness, and possesses a favourable property; namely, within any given
electron system, it is in a local inverse relation with the Fukui function,
which is known to be a proper indicator of local softness in the case of soft
systems. Numerical tests for a few selected molecules and a detailed analysis,
comparing the new definition of local hardness with the previous ones, show
promising results.Comment: 30 pages (including 6 figures, 1 table
Aromatic reactivity revealed: beyond resonance theory and frontier orbitals
The prediction of reactivity is one of the long-standing objectives of chemistry. We have extracted reactivity patterns observed in aromatic molecules spanning 150 years of synthetic developments and used the data to test the predictive capacity of popular reactivity models. This systematic analysis has exposed numerous regioselectivities that are not predicted by resonance theory, electrostatic potentials or frontier molecular orbital theory. In contrast, calculated local ionisation energy surfaces are shown to consistently reveal the most nucleophilic sites in aromatic molecules even where established reactivity models fail. Furthermore, these local ionisation energy minima are found to correlate with experimentally determined reactivity parameters. Since ionisation energy surfaces are simple to interpret and are provided as standard in popular computational chemistry software, the approach serves as a readily accessible tool for visualising the fundamental factors governing the reactivity of aromatic molecules
Density Functional Study of Structures and Electron Affinities of BrO4F/BrO4F−
The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT) methods with DZP++ basis sets. The planar F-Br…O2…O2 complexes possess 3A′ electronic state for neutral molecule and 4A′ state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om) (m = 1–4) and De− (BrO4F− → BrO4-mF− + Om and BrO4F− → BrO4-mF + Om−) are predicted. The adiabatic electron affinities (EAad) were predicted to be 4.52 eV for F-Br…O2…O2 (3A′←4A′) (B3LYP method)
Middle Devonian to Dinantian Sedimentation in the Campine Basin (Northern Belgium): Its Relation to Variscan Tectonism
The response of atomic electron densities to point perturbations in the external potential
- …
