1,620 research outputs found

    Mathematical Linguistics

    Get PDF

    On Selection, Projection, Meaning, and Semantic Content

    Get PDF
    Sponsored in part by the National Science Foundation through Grant GN-534 from the Office of Science Information Service to the Information Sciences Research Center, The Ohio State University

    The Accessibility of Deep (Semantic) Structures

    Get PDF
    Sponsored in part by the National Science Foundation through Grant GN-534 from the Office of Science Information Service to the Information Sciences Research Center, The Ohio State University

    Self-stabilizing Numerical Iterative Computation

    Full text link
    Many challenging tasks in sensor networks, including sensor calibration, ranking of nodes, monitoring, event region detection, collaborative filtering, collaborative signal processing, {\em etc.}, can be formulated as a problem of solving a linear system of equations. Several recent works propose different distributed algorithms for solving these problems, usually by using linear iterative numerical methods. In this work, we extend the settings of the above approaches, by adding another dimension to the problem. Specifically, we are interested in {\em self-stabilizing} algorithms, that continuously run and converge to a solution from any initial state. This aspect of the problem is highly important due to the dynamic nature of the network and the frequent changes in the measured environment. In this paper, we link together algorithms from two different domains. On the one hand, we use the rich linear algebra literature of linear iterative methods for solving systems of linear equations, which are naturally distributed with rapid convergence properties. On the other hand, we are interested in self-stabilizing algorithms, where the input to the computation is constantly changing, and we would like the algorithms to converge from any initial state. We propose a simple novel method called \syncAlg as a self-stabilizing variant of the linear iterative methods. We prove that under mild conditions the self-stabilizing algorithm converges to a desired result. We further extend these results to handle the asynchronous case. As a case study, we discuss the sensor calibration problem and provide simulation results to support the applicability of our approach

    Some Problems in the Description of English Accentuation

    Get PDF
    Sponsored in part by the National Science Foundation through Grant Gn-534.1 from the Office of Science Information Service to the Computer and Information Science Research Center, The Ohio State University

    Adaptive end-to-end optimization of mobile video streaming using QoS negotiation

    Get PDF
    Video streaming over wireless links is a non-trivial problem due to the large and frequent changes in the quality of the underlying radio channel combined with latency constraints. We believe that every layer in a mobile system must be prepared to adapt its behavior to its environment. Thus layers must be capable of operating in multiple modes; each mode will show a different quality and resource usage. Selecting the right mode of operation requires exchange of information between interacting layers. For example, selecting the best channel coding requires information about the quality of the channel (capacity, bit-error-rate) as well as the requirements (latency, reliability) of the compressed video stream generated by the source encoder. In this paper we study the application of our generic QoS negotiation scheme to a specific configuration for mobile video transmission. We describe the results of experiments studying the overall effectiveness, stability, and dynamics of adaptation of our distributed optimization approach

    The Design of Very Fast Portable Compilers

    Get PDF
    The Amsterdam Compiler Kit is a widely used compiler building system. Up until now, the emphasis has been on producing good object code. In this paper we describe recent work that has focused on reducing compile time. The techniques described in this paper have resulted in C compilers for the Sun-3 and VAX that are 3 to 4 times faster than the native compilers provided by the manufacturers. 1

    A road map for interoperable language resource metadata

    Get PDF
    LRs remain expensive to create and thus rare relative to demand across languages and technology types. The accidental re-creation of an LR that already exists is a nearly unforgiveable waste of scarce resources that is unfortunately not so easy to avoid. The number of catalogs the HLT researcher must search, with their different formats, make it possible to overlook an existing resource. This paper sketches the sources of this problem and outlines a proposal to rectify along with a new vision of LR cataloging that will to facilitates the documentation and exploitation of a much wider range of LRs than previously considered

    Three-dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics

    Get PDF
    © 2016. American Geophysical Union. All Rights Reserved. Few studies have examined the three-dimensional flow structure and bed morphology within elongate loops of large meandering channels. The present study focuses on the spatial patterns of three-dimensional flow structure and bed morphology within two elongate meander loops and examines how differences in outer bank roughness influence near-bank flow characteristics. Three-dimensional velocities were measured during two different events—a near-bankfull flow and an overbank event. Detailed data on channel bathymetry and bed form geometry were obtained during a near-bankfull event. Flow structure within the loops is characterized by strong topographic steering by the point bar, by the development of helical motion associated with flow curvature, and by acceleration of flow where bedrock is exposed along the outer bank. Near-bank velocities during the overbank event are less than those for the near-bankfull flow, highlighting the strong influence of the point bar on redistribution of mass and momentum of the flow at subbankfull stages. Multiple outer bank pools are evident within the elongate meander loop with low outer bank roughness, but are not present in the loop with high outer bank roughness, which may reflect the influence of abundant large woody debris on near-bank velocity characteristics. The positions of pools within both loops can be linked to spatial variations in planform curvature. The findings indicate that flow structure and bed morphology in these large elongate loops is similar to that in small elongate loops, but differs somewhat from flow structure and bed morphology reported for experimental elongate loops
    corecore