12,850 research outputs found

    Pre-Supernova Evolution of Massive Single and Binary Stars

    Full text link
    Massive stars are essential to understand a variety of branches of astronomy including galaxy and star cluster evolution, nucleosynthesis and supernovae, pulsars and black holes. It has become evident that massive star evolution is very diverse, being sensitive to metallicity, binarity, rotation, and possibly magnetic fields. While the problem to obtain a good statistical observational database is alleviated by current large spectroscopic surveys, it remains a challenge to model these diverse paths of massive stars towards their violent end stage. We show that the main sequence stage offers the best opportunity to gauge the relevance of the various possible evolutionary scenarios. This also allows to sketch the post-main sequence evolution of massive stars, for which observations of Wolf-Rayet stars give essential clues. Recent supernova discoveries due to the current boost in transient searches allow tentative mappings of progenitor models with supernova types, including pair instability supernovae and gamma-ray bursts.Comment: 57 pages, 10 figures; free link to complete published paper: http://www.annualreviews.org/eprint/kf2CFBEBKi93fbcGJCBW/full/10.1146/annurev-astro-081811-12553

    Presupernova evolution of accreting white dwarfs with rotation

    Full text link
    We discuss the effects of rotation on the evolution of accreting carbon-oxygen white dwarfs, with the emphasis on possible consequences in Type Ia supernova (SN Ia) progenitors. Starting with a slowly rotating white dwarf, we simulate the accretion of matter and angular momentum from a quasi-Keplerian accretion disk. The role of the various rotationally induced hydrodynamic instabilities for the transport of angular momentum inside the white dwarf is investigated. We find that the dynamical shear instability is the most important one in the highly degenerate core. Our results imply that accreting white dwarfs rotate differentially throughout,with a shear rate close to the threshold value for the onset of the dynamical shear instability. As the latter depends on the temperature of the white dwarf, the thermal evolution of the white dwarf core is found to be relevant for the angular momentum redistribution. As found previously, significant rotation is shown to lead to carbon ignition masses well above 1.4 Msun. Our models suggest a wide range of white dwarf explosion masses, which could be responsible for some aspects of the diversity observed in SNe Ia. We analyze the potential role of the bar-mode and the r-mode instability in rapidly rotating white dwarfs, which may impose angular momentum loss by gravitational wave radiation. We discuss the consequences of the resulting spin-down for the fate of the white dwarf, and the possibility to detect the emitted gravitational waves at frequencies of 0.1 >... 1.0 Hz in nearby galaxies with LISA. Possible implications of fast and differentially rotating white dwarf cores for the flame propagation in exploding white dwarfs are also briefly discussed.Comment: 22 pages, 16 figures, Accepted to A&

    The State of the Circumstellar Medium Surrounding Gamma-Ray Burst Sources and its Effect on the Afterglow Appearance

    Full text link
    We present a numerical investigation of the contribution of the presupernova ejecta of Wolf-Rayet stars to the environment surrounding gamma-ray bursts (GRBs), and describe how this external matter can affect the observable afterglow characteristics. An implicit hydrodynamic calculation for massive stellar evolution is used here to provide the inner boundary conditions for an explicit hydrodynamical code to model the circumstellar gas dynamics. The resulting properties of the circumstellar medium are then used to calculate the deceleration of a relativistic, gas-dynamic jet and the corresponding afterglow light curve produced as the shock wave propagates through the shocked-wind medium. We find that variations in the stellar wind drive instabilities that may produce radial filaments in the shocked-wind region. These comet-like tails of clumps could give rise to strong temporal variations in the early afterglow lightcurve. Afterglows may be expected to differ widely among themselves, depending on the angular anisotropy of the jet and the properties of the stellar progenitor; a wide diversity of behaviors may be the rule, rather than the exception.Comment: 17 pages, 7 figures, ApJ in pres

    How Efficient is Rotational Mixing in Massive Stars ?

    Full text link
    The VLT-Flames Survey for Massive Stars (Evans05,Evans06) provides recise measurements of rotational velocities and nitrogen surface abundances of massive stars in the Magellanic Clouds. Specifically, for the first time, such abundances have been estimated for stars with significant rotational velocities. This extraordinary data set gives us the unique possibility to calibrate rotationally and magnetically induced mixing processes. Therefore, we have computed a grid of stellar evolution models varying in mass, initial rotational velocity and chemical composition. In our models we find that although magnetic fields generated by the Spruit-Taylor dynamo are essential to understand the internal angular momentum transport (and hence the rotational behavior), the corresponding chemical mixing must be neglected to reproduce the observations. Further we show that for low metallicities detailed initial abundances are of prime importance, as solar-scaled abundances may result in significant calibration errors.Comment: To appear in the proceedings of "First Stars III", Santa Fe, New Mexico, July 16-20, 2007, 3 pages, 3 figure

    The spectroscopic Hertzsprung-Russell diagram

    Full text link
    The Hertzsprung-Russell diagram is an essential diagnostic diagram for stellar structure and evolution, which has now been in use for more than 100 years. Our spectroscopic Hertzsprung-Russell (sHR) diagram shows the inverse of the flux-mean gravity versus the effective temperature. Observed stars whose spectra have been quantitatively analyzed can be entered in this diagram without the knowledge of the stellar distance or absolute brightness. Observed stars can be as conveniently compared to stellar evolution calculations in the sHR diagram as in the Hertzsprung-Russell diagram. However, at the same time, our ordinate is proportional to the stellar mass-to-luminosity ratio, which can thus be directly determined. For intermediate- and low-mass star evolution at constant mass, we show that the shape of an evolutionary track in the sHR diagram is identical to that in the Hertzsprung-Russell diagram. We also demonstrate that for hot stars, their stellar Eddington factor can be directly read off the sHR diagram. For stars near their Eddington limit, we argue that a version of the sHR diagram may be useful where the gravity is exchanged by the effective gravity. We discuss the advantages and limitations of the sHR diagram, and show that it can be fruitfully applied to Galactic stars, but also to stars with known distance, e.g., in the LMC or in galaxies beyond the Local Group.Comment: 9 pages, 8 figures, Astronomy and Astrophysics, in pres

    How Efficient is Rotational Mixing in Massive Stars ?

    Full text link
    The VLT-Flames Survey for Massive Stars (Evans05,Evans06) provides recise measurements of rotational velocities and nitrogen surface abundances of massive stars in the Magellanic Clouds. Specifically, for the first time, such abundances have been estimated for stars with significant rotational velocities. This extraordinary data set gives us the unique possibility to calibrate rotationally and magnetically induced mixing processes. Therefore, we have computed a grid of stellar evolution models varying in mass, initial rotational velocity and chemical composition. In our models we find that although magnetic fields generated by the Spruit-Taylor dynamo are essential to understand the internal angular momentum transport (and hence the rotational behavior), the corresponding chemical mixing must be neglected to reproduce the observations. Further we show that for low metallicities detailed initial abundances are of prime importance, as solar-scaled abundances may result in significant calibration errors.Comment: To appear in the proceedings of "First Stars III", Santa Fe, New Mexico, July 16-20, 2007, 3 pages, 3 figure
    corecore