231 research outputs found

    Bust-a-Move/Puzzle Bobble is NP-Complete

    Get PDF
    We prove that the classic 1994 Taito video game, known as Puzzle Bobble or Bust-a-Move, is NP-complete. Our proof applies to the perfect-information version where the bubble sequence is known in advance, and it uses just three bubble colors.Comment: 9 pages, 9 figures. Corrected mistakes in gadget

    Reconfiguration of 3D Crystalline Robots Using O(log n) Parallel Moves

    Full text link
    We consider the theoretical model of Crystalline robots, which have been introduced and prototyped by the robotics community. These robots consist of independently manipulable unit-square atoms that can extend/contract arms on each side and attach/detach from neighbors. These operations suffice to reconfigure between any two given (connected) shapes. The worst-case number of sequential moves required to transform one connected configuration to another is known to be Theta(n). However, in principle, atoms can all move simultaneously. We develop a parallel algorithm for reconfiguration that runs in only O(log n) parallel steps, although the total number of operations increases slightly to Theta(nlogn). The result is the first (theoretically) almost-instantaneous universally reconfigurable robot built from simple units.Comment: 21 pages, 10 figure

    Cookie Clicker

    Full text link
    Cookie Clicker is a popular online incremental game where the goal of the game is to generate as many cookies as possible. In the game you start with an initial cookie generation rate, and you can use cookies as currency to purchase various items that increase your cookie generation rate. In this paper, we analyze strategies for playing Cookie Clicker optimally. While simple to state, the game gives rise to interesting analysis involving ideas from NP-hardness, approximation algorithms, and dynamic programming

    Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams

    Full text link
    We consider preprocessing a set SS of nn points in convex position in the plane into a data structure supporting queries of the following form: given a point qq and a directed line \ell in the plane, report the point of SS that is farthest from (or, alternatively, nearest to) the point qq among all points to the left of line \ell. We present two data structures for this problem. The first data structure uses O(n1+ε)O(n^{1+\varepsilon}) space and preprocessing time, and answers queries in O(21/εlogn)O(2^{1/\varepsilon} \log n) time, for any 0<ε<10 < \varepsilon < 1. The second data structure uses O(nlog3n)O(n \log^3 n) space and polynomial preprocessing time, and answers queries in O(logn)O(\log n) time. These are the first solutions to the problem with O(logn)O(\log n) query time and o(n2)o(n^2) space. The second data structure uses a new representation of nearest- and farthest-point Voronoi diagrams of points in convex position. This representation supports the insertion of new points in clockwise order using only O(logn)O(\log n) amortized pointer changes, in addition to O(logn)O(\log n)-time point-location queries, even though every such update may make Θ(n)\Theta(n) combinatorial changes to the Voronoi diagram. This data structure is the first demonstration that deterministically and incrementally constructed Voronoi diagrams can be maintained in o(n)o(n) amortized pointer changes per operation while keeping O(logn)O(\log n)-time point-location queries.Comment: 17 pages, 6 figures. Various small improvements. To appear in Algorithmic

    Worst-Case Optimal Tree Layout in External Memory

    Get PDF
    Consider laying out a fixed-topology binary tree of N nodes into external memory with block size B so as to minimize the worst-case number of block memory transfers required to traverse a path from the root to a node of depth D. We prove that the optimal number of memory transfers is Θ([D over lg(1+B))] when D = O(lgN), Θ([lgN over lg(1+[BlgN over D])]) when D=Ω(lgN) and D=O(BlgN), Θ([D over B]) ,when D=Ω(BlgN).National Science Foundation (U.S.) (Grant CCF-0430849)National Science Foundation (U.S.) (Grant OISE-0334653

    Continuous Blooming of Convex Polyhedra

    Full text link
    We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.Comment: 13 pages, 6 figure

    The parameterized complexity of some geometric problems in unbounded dimension

    Full text link
    We study the parameterized complexity of the following fundamental geometric problems with respect to the dimension dd: i) Given nn points in \Rd, compute their minimum enclosing cylinder. ii) Given two nn-point sets in \Rd, decide whether they can be separated by two hyperplanes. iii) Given a system of nn linear inequalities with dd variables, find a maximum-size feasible subsystem. We show that (the decision versions of) all these problems are W[1]-hard when parameterized by the dimension dd. %and hence not solvable in O(f(d)nc){O}(f(d)n^c) time, for any computable function ff and constant cc %(unless FPT=W[1]). Our reductions also give a nΩ(d)n^{\Omega(d)}-time lower bound (under the Exponential Time Hypothesis)

    Identification and single-cell functional characterization of an endodermally biased pluripotent substate in human embryonic stem cells

    Get PDF
    Human embryonic stem cells (hESCs) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESCs we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single-cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long-term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single-cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm-biased stem cell state

    Locked and Unlocked Chains of Planar Shapes

    Full text link
    We extend linkage unfolding results from the well-studied case of polygonal linkages to the more general case of linkages of polygons. More precisely, we consider chains of nonoverlapping rigid planar shapes (Jordan regions) that are hinged together sequentially at rotatable joints. Our goal is to characterize the families of planar shapes that admit locked chains, where some configurations cannot be reached by continuous reconfiguration without self-intersection, and which families of planar shapes guarantee universal foldability, where every chain is guaranteed to have a connected configuration space. Previously, only obtuse triangles were known to admit locked shapes, and only line segments were known to guarantee universal foldability. We show that a surprisingly general family of planar shapes, called slender adornments, guarantees universal foldability: roughly, the distance from each edge along the path along the boundary of the slender adornment to each hinge should be monotone. In contrast, we show that isosceles triangles with any desired apex angle less than 90 degrees admit locked chains, which is precisely the threshold beyond which the inward-normal property no longer holds.Comment: 23 pages, 25 figures, Latex; full journal version with all proof details. (Fixed crash-induced bugs in the abstract.
    corecore