191 research outputs found

    Weltweite Neuorientierung der Wirtschaftspolitik? Thesen zum 24. Kieler Konjunkturgespräch

    Full text link

    Am Rande der Krise: Thesen zum 26. Kieler Konjunkturgespräch

    Full text link

    Warten auf den Aufschwung: Thesen zum 25. Kieler Konjunkturgespräch

    Full text link

    Differences in citation frequency of clinical and basic science papers in cardiovascular research

    Get PDF
    In this article, a critical analysis is performed on differences in citation frequency of basic and clinical cardiovascular papers. It appears that the latter papers are cited at about 40% higher frequency. The differences between the largest number of citations of the most cited papers are even larger. It is also demonstrated that the groups of clinical and basic cardiovascular papers are also heterogeneous concerning citation frequency. It is concluded that none of the existing citation indicators appreciates these differences. At this moment these indicators should not be used for quality assessment of individual scientists and scientific niches with small numbers of scientists

    The 2025 Active Metamaterials Roadmap

    Get PDF
    Active metamaterials are engineered structures that possess novel properties that can be changed after the point of manufacture. Their novel properties arise predominantly from their physical structure, as opposed to their chemical composition and can be changed through means such as direct energy addition into wave paths, or physically changing/morphing the structure in response to both a user or environmental input. Active metamaterials are currently of wide interest to the physics community and encompass a range of sub-domains in applied physics (e.g. photonic, microwave, acoustic, mechanical, etc.). They possess the potential to provide solutions that are more suitable to specific applications, or which allow novel properties to be produced which cannot be achieved with passive metamaterials, such as time-varying or gain enhancement effects. They have the potential to help solve some of the important current and future problems faced by the advancement of modern society, such as achieving net-zero, sustainability, healthcare and equality goals. Despite their huge potential, the added complexity of their design and operation, compared to passive metamaterials creates challenges to the advancement of the field, particularly beyond theoretical and lab-based experiments. This roadmap brings together experts in all types of active metamaterials and across a wide range of areas of applied physics. The objective is to provide an overview of the current state of the art and the associated current/future challenges, with the hope that the required advances identified create a roadmap for the future advancement and application of this field
    corecore