1,851 research outputs found
The Democratic Biopolitics of PrEP
PrEP (Pre-Exposure Prophylaxis) is a relatively new drug-based HIV prevention technique and an important means to lower the HIV risk of gay men who are especially vulnerable to HIV. From the perspective of biopolitics, PrEP inscribes itself in a larger trend of medicalization and the rise of pharmapower. This article reconstructs and evaluates contemporary literature on biopolitical theory as it applies to PrEP, by bringing it in a dialogue with a mapping of the political debate on PrEP. As PrEP changes sexual norms and subjectification, for example condom use and its meaning for gay subjectivity, it is highly contested. The article shows that the debate on PrEP can be best described with the concepts ‘sexual-somatic ethics’ and ‘democratic biopolitics’, which I develop based on the biopolitical approach of Nikolas Rose and Paul Rabinow. In contrast, interpretations of PrEP which are following governmentality studies or Italian Theory amount to either farfetched or trivial positions on PrEP, when seen in light of the political debate. Furthermore, the article is a contribution to the scholarship on gay subjectivity, highlighting how homophobia and homonormativity haunts gay sex even in liberal environments, and how PrEP can serve as an entry point for the destigmatization of gay sexuality and transformation of gay subjectivity. ‘Biopolitical democratization’ entails making explicit how medical technology and health care relates to sexual subjectification and ethics, to strengthen the voice of (potential) PrEP users in health politics, and to renegotiate the profit and power of Big Pharma
Going Remote: Marketing Library Resources and Services
Objectives
• Describe the library’s efforts in restructuring marketing strategies strategies to reach out and engage library patrons in a virtual environment
• Examine the impact of the efforts on library services and resource acces
UNM Area Guide to Sustainable Living
Empowering choices for improving the health of our local environment
Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis
Smooth muscle cell (SMC) proliferation is a hallmark of vascular injury and disease. Global hypomethylation occurs during SMC proliferation in culture and in vivo during neointimal formation. Regardless of the programmed or stochastic nature of hypomethylation, identifying these changes is important in understanding vascular disease, as maintenance of a cells' epigenetic profile is essential for maintaining cellular phenotype. Global hypomethylation of proliferating aortic SMCs and concomitant decrease of DNMT1 expression were identified in culture during passage. An epigenome screen identified regions of the genome that were hypomethylated during proliferation and a region containing Collagen, type XV, alpha 1 (COL15A1) was selected by ‘genomic convergence' for characterization. COL15A1 transcript and protein levels increased with passage-dependent decreases in DNA methylation and the transcript was sensitive to treatment with 5-Aza-2′-deoxycytidine, suggesting DNA methylation-mediated gene expression. Phenotypically, knockdown of COL15A1 increased SMC migration and decreased proliferation and Col15a1 expression was induced in an atherosclerotic lesion and localized to the atherosclerotic cap. A sequence variant in COL15A1 that is significantly associated with atherosclerosis (rs4142986, P = 0.017, OR = 1.434) was methylated and methylation of the risk allele correlated with decreased gene expression and increased atherosclerosis in human aorta. In summary, hypomethylation of COL15A1 occurs during SMC proliferation and the consequent increased gene expression may impact SMC phenotype and atherosclerosis formation. Hypomethylated genes, such as COL15A1, provide evidence for concomitant epigenetic regulation and genetic susceptibility, and define a class of causal targets that sit at the intersection of genetic and epigenetic predisposition in the etiology of complex diseas
Trial baseline characteristics of a cluster randomised controlled trial of a school-located obesity prevention programme; the Healthy Lifestyles Programme (HeLP) trial
This is the final version of the article. Available from BioMed Central via the DOI in this record.Background
We have developed a healthy lifestyles programme (HeLP) for primary school aged children (9–10 years), currently being evaluated in a definitive cluster randomised controlled trial. This paper descriptively presents the baseline characteristics of trial children (BMI, waist circumference, % body fat, diet and physical activity) by gender, cluster level socio-economic status, school size and time of recruitment into the trial.
Methods
Schools were recruited from across the South West of England and allocated 1:1 to either intervention (HeLP) or control (usual practice) stratified by the proportion of children eligible for free school meals (FSM, 1 Year 5 class). The primary outcome is change in body mass index standard deviation score (BMI sds) at 24 months post-randomisation. Secondary outcomes are BMI sds at 18 months, waist circumference and percentage body fat sds at 18 and 24 months, proportion of children classified as underweight, overweight and obese at 18 and 24 months, physical activity (for a sub-sample) and food intake at 18 months.
Results
At baseline 11.4% and 13.6% of children were categorised as overweight or obese respectively. A higher percentage of girls than boys (25.3% vs 24.8%) and children from schools in FSM category 2 (28.2% vs 23.2%) were overweight or obese. Children were consuming a mean (range) of 4.15 (0–13) energy dense snacks (EDS) and 3.23 (0–9) healthy snacks (HS) per day with children from schools in FSM category 2 consuming more EDS and negative food markers and less HS and positive food markers. Children spent an average 53.6 min per day (11.9 to 124.8) in MVPA and thirteen hours (779.3 min) per day (11 h to 15 h) doing less than ‘light’ intensity activity. Less than 5% of children achieved the Departments of Health’s recommendation of 60 min of MVPA every day.
Conclusion
We have excellent completeness of baseline data for all measures and have achieved compliance to accelerometry not seen before in other large scale studies. Our anthropometric baseline data is representative of local and national data for children this age and reflects the gender and socio-economic variations expected of children this age in relation to physical activity and weight status.The definitive trial of HeLP is funded by the UK National Institute for Health Research (NIHR) Public Health Research Programme (10/3010/01) and a full report will be published on the NIHR website. Intervention materials and delivery was funded by the Peninsula College of Medicine and Dentistry. PenCLAHRC provided methodological support during the transition from the exploratory trial to the definitive evaluation
Recommended from our members
High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis
Summary Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations
MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls
Variants at microRNA-137 (MIR137), one of the most strongly associated schizophrenia risk loci identified to date, have been associated with poorer cognitive performance. As microRNA-137 is known to regulate the expression of ~1900 other genes, including several that are independently associated with schizophrenia, we tested whether this gene set was also associated with variation in cognitive performance. Our analysis was based on an empirically derived list of genes whose expression was altered by manipulation of MIR137 expression. This list was cross-referenced with genome-wide schizophrenia association data to construct individual polygenic scores. We then tested, in a sample of 808 patients and 192 controls, whether these risk scores were associated with altered performance on cognitive functions known to be affected in schizophrenia. A subgroup of healthy participants also underwent functional imaging during memory (n=108) and face processing tasks (n=83). Increased polygenic risk within the empirically derived miR-137 regulated gene score was associated with significantly lower performance on intelligence quotient, working memory and episodic memory. These effects were observed most clearly at a polygenic threshold of P=0.05, although significant results were observed at all three thresholds analyzed. This association was found independently for the gene set as a whole, excluding the schizophrenia-associated MIR137 SNP itself. Analysis of the spatial working memory fMRI task further suggested that increased risk score (thresholded at P=10−5) was significantly associated with increased activation of the right inferior occipital gyrus. In conclusion, these data are consistent with emerging evidence that MIR137 associated risk for schizophrenia may relate to its broader downstream genetic effects
- …
