97 research outputs found
Brane-World Gravity
The observable universe could be a 1+3-surface (the "brane") embedded in a
1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model
particles and fields trapped on the brane while gravity is free to access the
bulk. At least one of the \textit{d} extra spatial dimensions could be very
large relative to the Planck scale, which lowers the fundamental gravity scale,
possibly even down to the electroweak ( TeV) level. This revolutionary
picture arises in the framework of recent developments in M theory. The
1+10-dimensional M theory encompasses the known 1+9-dimensional superstring
theories, and is widely considered to be a promising potential route to quantum
gravity. At low energies, gravity is localized at the brane and general
relativity is recovered, but at high energies gravity "leaks" into the bulk,
behaving in a truly higher-dimensional way. This introduces significant changes
to gravitational dynamics and perturbations, with interesting and potentially
testable implications for high-energy astrophysics, black holes, and cosmology.
Brane-world models offer a phenomenological way to test some of the novel
predictions and corrections to general relativity that are implied by M theory.
This review analyzes the geometry, dynamics and perturbations of simple
brane-world models for cosmology and astrophysics, mainly focusing on warped
5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover
the simplest brane-world models in which 4-dimensional gravity on the brane is
modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati
models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004)
"Brane-World Gravity", 119 pages, 28 figures, the update contains new
material on RS perturbations, including full numerical solutions of
gravitational waves and scalar perturbations, on DGP models, and also on 6D
models. A published version in Living Reviews in Relativit
How the blood pool properties at onset affect the temporal behavior of simulated bruises
The influence of initial blood pool properties on the temporal behavior of bruises is currently unknown. We addressed this important issue by utilizing three typical classes of bruises in our three-layered finite compartment model. We simulated the effects of their initial shapes, regularity of boundaries and initial blood concentration distributions (gaussian vs. homogeneous) on the hemoglobin and bilirubin areas in the dermal top layer. Age determination of bruises with gaussian hemoglobin concentration was also addressed. We found that the initial blood pool properties strongly affect bruise behavior. We determined the age of a 200-h simulated bruise with gaussian hemoglobin concentration with 3 h uncertainty. In conclusion, bruise behavior depends non-intuitively on the initial blood pool properties; hence, a model that includes shape, area and concentration distribution at onset is indispensable. Future age determination, including inhomogeneous hemoglobin distributions, will likely be based on the presented method for gaussian distributions
Statistical Methods for Linking Health, Exposure, and Hazards
The Environmental Public Health Tracking Network (EPHTN) proposes to link environmental hazards and exposures to health outcomes. Statistical methods used in case–control and cohort studies to link health outcomes to individual exposure estimates are well developed. However, reliable exposure estimates for many contaminants are not available at the individual level. In these cases, exposure/hazard data are often aggregated over a geographic area, and ecologic models are used to relate health outcome and exposure/hazard. Ecologic models are not without limitations in interpretation. EPHTN data are characteristic of much information currently being collected—they are multivariate, with many predictors and response variables, often aggregated over geographic regions (small and large) and correlated in space and/or time. The methods to model trends in space and time, handle correlation structures in the data, estimate effects, test hypotheses, and predict future outcomes are relatively new and without extensive application in environmental public health. In this article we outline a tiered approach to data analysis for EPHTN and review the use of standard methods for relating exposure/hazards, disease mapping and clustering techniques, Bayesian approaches, Markov chain Monte Carlo methods for estimation of posterior parameters, and geostatistical methods. The advantages and limitations of these methods are discussed
3D finite compartment modeling of formation and healing of bruises may identify methods for age determination of bruises
Simulating the spatial and temporal behavior of bruises may identify methods that allow accurate age determination of bruises to assess child abuse. We developed a numerical 3D model to simulate the spatial kinetics of hemoglobin and bilirubin during the formation and healing of bruises. Using this model, we studied how skin thickness, bruise diameter and diffusivities affect the formation and healing of circular symmetric bruises and compared a simulated bruise with a natural inhomogeneous bruise. Healing is faster for smaller bruises in thinner and less dense skin. The simulated and natural bruises showed similar spatial and temporal dynamics. The different spatio-temporal dynamics of hemoglobin and bilirubin allows age determination of model bruises. Combining our model predictions with individual natural bruises may allow optimizing our model parameters. It may particularly identify methods for more accurate age determination than currently possible to aid the assessment of child abuse
Prognostic role of p27Kip1 and apoptosis in human breast cancer
Human breast carcinoma is biologically heterogeneous, and its clinical course may vary from an indolent slowly progressive one to a course associated with rapid progression and metastatic spread. It is important to establish prognostic factors which will define subgroups of patients with low vs high risk of recurrence so as to better define the need for additional therapy. Additional characterization of the molecular make-up of breast cancer phenotypes should provide important insights into the biology of breast cancer. In the present study, we investigated apoptosis, expression of p27Kip1 and p53 retrospectively in 181 human breast cancer specimens. In addition, their relevance to the biological behaviour of breast cancer was examined. Our studies found a significant association among high histological grade, high p53, low apoptosis and low p27. Our results also demonstrated that, in human breast cancer, low levels of p27 and apoptotic index (AI) strongly correlated with the presence of lymph node metastasis and decreased patient survival. In node-negative patients, however, p27 also had prognostic value for relapse-free and overall survival in multivariate analysis. Furthermore p27 and AI had predictive value for the benefits of chemotherapy. These latter observations should prompt prospective randomized studies designed to investigate the predictive role of p27 and AI in determining who should receive chemotherapy in node-negative patients. © 1999 Cancer Research Campaig
A note on the revisited Uppsala internationalization process model – the implications of business networks and entrepreneurship
A Concerted HIF-1α/MT1-MMP Signalling Axis Regulates the Expression of the 3BP2 Adaptor Protein in Hypoxic Mesenchymal Stromal Cells
Increased plasticity, migratory and immunosuppressive abilities characterize mesenchymal stromal cells (MSC) which enable them to be active participants in the development of hypoxic solid tumours. Our understanding of the oncogenic adaptation of MSC to hypoxia however lacks the identification and characterization of specific biomarkers. In this study, we assessed the hypoxic regulation of 3BP2/SH3BP2 (Abl SH3-binding protein 2), an immune response adaptor/scaffold protein which regulates leukocyte differentiation and motility. Gene silencing of 3BP2 abrogated MSC migration in response to hypoxic cues and generation of MSC stably expressing the transcription factor hypoxia inducible factor 1alpha (HIF-1α) resulted in increased endogenous 3BP2 expression as well as cell migration. Analysis of the 3BP2 promoter sequence revealed only one potential HIF-1α binding site within the human but none in the murine sequence. An alternate early signalling cascade that regulated 3BP2 expression was found to involve membrane type-1 matrix metalloproteinase (MT1-MMP) transcriptional regulation which gene silencing abrogated 3BP2 expression in response to hypoxia. Collectively, we provide evidence for a concerted HIF-1α/MT1-MMP signalling axis that explains the induction of adaptor protein 3BP2 and which may link protein binding partners together and stimulate oncogenic MSC migration. These mechanistic observations support the potential for malignant transformation of MSC within hypoxic tumour stroma and may contribute to evasion of the immune system by a tumour
Heavy burden of non-communicable diseases at early age and gender disparities in an adult population of Burkina Faso: world health survey
<p>Abstract</p> <p>Background</p> <p>WHO estimates suggest that age-specific death rates from non-communicable diseases are higher in sub-Saharan Africa than in high-income countries. The objectives of this study were to examine, in Burkina Faso, the prevalence of non-communicable disease symptoms by age, gender, socioeconomic group and setting (rural/urban), and to assess gender and socioeconomic inequalities in the prevalence of these symptoms.</p> <p>Methods</p> <p>We obtained data from the Burkina Faso World Health Survey, which was conducted in an adult population (18 years and over) with a high response rate (4822/4880 selected individuals). The survey used a multi-stage stratified random cluster sampling strategy to identify participants. The survey collected information on socio-demographic and economic characteristics, as well as data on symptoms of a variety of health conditions. Our study focused on joint disease, back pain, angina pectoris, and asthma. We estimated prevalence correcting for the sampling design. We used multiple Poisson regression to estimate associations between non-communicable disease symptoms, gender, socioeconomic status and setting.</p> <p>Results</p> <p>The overall crude prevalence and 95% confidence intervals (CI) were: 16.2% [13.5; 19.2] for joint disease, 24% [21.5; 26.6] for back pain, 17.9% [15.8; 20.2] for angina pectoris, and 11.6% [9.5; 14.2] for asthma. Consistent relationships between age and the prevalence of non-communicable disease symptoms were observed in both men and women from rural and urban settings. There was markedly high prevalence in all conditions studied, starting with young adults. Women presented higher prevalence rates of symptoms than men for all conditions: prevalence ratios and 95% CIs were 1.20 [1.01; 1.43] for joint disease, 1.42 [1.21; 1.66] for back pain, 1.68 [1.39; 2.04] for angina pectoris, and 1.28 [0.99; 1.65] for asthma. Housewives and unemployed women had the highest prevalence rates of non-communicable disease symptoms.</p> <p>Conclusions</p> <p>Our work suggests that social inequality extends into the distribution of non-communicable diseases among social groups and supports the thesis of a differential vulnerability in Burkinabè women. It raises the possibility of an abnormally high rate of premature morbidity that could manifest as a form of premature aging in the adult population. Increased prevention, screening and treatment are needed in Burkina Faso to address high prevalence and gender inequalities in non-communicable diseases.</p
- …
