110 research outputs found
TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas
An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.DNA polymerase δ, whose catalytic subunit is encoded by POLD1, is responsible for lagging-strand DNA synthesis during DNA replication. It carries out this synthesis with high fidelity owing to its intrinsic 3'- to 5'-exonuclease activity, which confers proofreading ability. Missense mutations affecting the exonuclease domain of POLD1 have recently been shown to predispose to colorectal and endometrial cancers. Here we report a recurring heterozygous single-codon deletion in POLD1 affecting the polymerase active site that abolishes DNA polymerase activity but only mildly impairs 3'- to 5'-exonuclease activity. This mutation causes a distinct multisystem disorder that includes subcutaneous lipodystrophy, deafness, mandibular hypoplasia and hypogonadism in males. This discovery suggests that perturbing the function of the ubiquitously expressed POLD1 polymerase has unexpectedly tissue-specific effects in humans and argues for an important role for POLD1 function in adipose tissue homeostasis.This work was supported by NIHR Exeter Clinical Research Facility through funding for SE and ATH and general
infrastructure. The authors thank Michael Day, Annet Damhuis and Richard Gilbert for technical assistance. We
thank Karen Knapp for providing the data for the DEXA calculations. SE, ATH, SO are supported by Wellcome
Weedon et al. Page 6
Nat Genet. Author manuscript; available in PMC 2014 February 01.
Europe PMC Funders Author Manuscripts Europe PMC Funders Author Manuscripts
Trust Senior Investigator awards. DS and RKS (098498/Z/12/Z) are supported by Wellcome Trust Senior Research
Fellowships in Clinical Science. MNW is supported by the Wellcome Trust as part of the WT Biomedical
Informatics Hub funding. RO is supported by Diabetes UK. DS, RKS and SO are supported by the UK National
Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. KJG is supported by the Agency for
Science, Technology and Research, Singapore (A*STAR). LAL and MJP are supported by grants NCI-61-6845 and
62-4860
A rare SNP in pre-miR-34a is associated with increased levels of miR-34a in pancreatic beta cells.
Open Access Article.Changes in the levels of specific microRNAs (miRNAs) can reduce glucose-stimulated insulin secretion and increase beta-cell apoptosis, two causes of islet dysfunction and progression to type 2 diabetes. Studies have shown that single nucleotide polymorphisms (SNPs) within miRNA genes can affect their expression. We sought to determine whether miRNAs, with a known role in beta-cell function, possess SNPs within the pre-miRNA structure which can affect their expression. Using published literature and dbSNP, we aimed to identify miRNAs with a role in beta-cell function that also possess SNPs within the region encoding its pre-miRNA. Following transfection of plasmids, encoding the pre-miRNA and each allele of the SNP, miRNA expression was measured. Two rare SNPs located within the pre-miRNA structure of two miRNA genes important to beta-cell function (miR-34a and miR-96) were identified. Transfection of INS-1 and MIN6 cells with plasmids encoding pre-miR-34a and the minor allele of rs72631823 resulted in significantly (p < 0.05) higher miR-34a expression, compared to cells transfected with plasmids encoding the corresponding major allele. Similarly, higher levels were also observed upon transfection of HeLa cells. Transfection of MIN6 cells with plasmids encoding pre-miR-96 and each allele of rs41274239 resulted in no significant differences in miR-96 expression. A rare SNP in pre-miR-34a is associated with increased levels of mature miR-34a. Given that small changes in miR-34a levels have been shown to cause increased levels of beta-cell apoptosis this finding may be of interest to studies looking at determining the effect of rare variants on type 2 diabetes susceptibility
Paternal and maternal influences on differences in birth weight between Europeans and Indians born in the UK.
BACKGROUND: Ethnic groups differ significantly in adult physique and birth weight. We aimed to improve understanding of maternal versus paternal contributions to ethnic differences in birth weight, by comparing the offspring of same-ethnic versus mixed-ethnic unions amongst Europeans and South Asian Indians in the UK. METHODOLOGY AND PRINCIPAL FINDINGS: We used data from the UK Office for National Statistics Longitudinal Study (LS) and the Chelsea and Westminster Hospital (CWH), London. In the combined sample at all gestational ages, average birth weight of offspring with two European parents was significantly greater than that of offspring with two Indian parents [Δ = 344 (95% CI 329, 360) g]. Compared to offspring of European mothers, the offspring of Indian mothers had lower birth weight, whether the father was European [Δ = -152 (95% CI -92, -212) g] or Indian [Δ = -254 (95% -315, -192) g]. After adjustment for various confounding factors, average birth weight of offspring with European father and Indian mother was greater than that of offspring with two Indian parents [LS: Δ = 249 (95% CI 143, 354) g; CWH: Δ = 236 (95% CI 62, 411) g]. Average birth weight of offspring with Indian father and European mother was significantly less than that of offspring with two European parents [LS: Δ = -117 (95% CI -207, -26) g; CWH: Δ = -83 (-206, 40) g]. CONCLUSIONS/SIGNIFICANCE: Birth weight of offspring with mixed-ethnic parentage was intermediate between that of offspring with two European or two Indian parents, demonstrating a paternal as well as a maternal contribution to ethnic differences in fetal growth. This can be interpreted as demonstrating paternal modulation of maternal investment in offspring. We suggest long-term nutritional experience over generations may drive such ethnic differences through parental co-adaptation
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Genome-wide analysis identifies 12 loci influencing human reproductive behavior.
The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits
Genetic Variants of Diabetes Risk and Incident Cardiovascular Events in Chronic Coronary Artery Disease
Objective: To determine whether information from genetic risk variants for diabetes is associated with cardiovascular events incidence. Methods: From the about 30 known genes associated with diabetes, we genotyped single-nucleotide polymorphisms at the 10 loci most associated with type-2 diabetes in 425 subjects from the MASS-II Study, a randomized study in patients with multi-vessel coronary artery disease. The combined genetic information was evaluated by number of risk alleles for diabetes. Performance of genetic models relative to major cardiovascular events incidence was analyzed through Kaplan-Meier curve comparison and Cox Hazard Models and the discriminatory ability of models was assessed for cardiovascular events by calculating the area under the ROC curve. Results: Genetic information was able to predict 5-year incidence of major cardiovascular events and overall-mortality in non-diabetic individuals, even after adjustment for potential confounders including fasting glycemia. Non-diabetic individuals with high genetic risk had a similar incidence of events then diabetic individuals (cumulative hazard of 33.0 versus 35.1% of diabetic subjects). The addition of combined genetic information to clinical predictors significantly improved the AUC for cardiovascular events incidence (AUC = 0.641 versus 0.610). Conclusions: Combined information of genetic variants for diabetes risk is associated to major cardiovascular events incidence, including overall mortality, in non-diabetic individuals with coronary artery disease.FAPESP[2007/54138-2
Extent of Height Variability Explained by Known Height-Associated Genetic Variants in an Isolated Population of the Adriatic Coast of Croatia
BACKGROUND: Human height is a classical example of a polygenic quantitative trait. Recent large-scale genome-wide association studies (GWAS) have identified more than 200 height-associated loci, though these variants explain only 2∼10% of overall variability of normal height. The objective of this study was to investigate the variance explained by these loci in a relatively isolated population of European descent with limited admixture and homogeneous genetic background from the Adriatic coast of Croatia. METHODOLOGY/PRINCIPAL FINDINGS: In a sample of 1304 individuals from the island population of Hvar, Croatia, we performed genome-wide SNP typing and assessed the variance explained by genetic scores constructed from different panels of height-associated SNPs extracted from five published studies. The combined information of the 180 SNPs reported by Lango Allen el al. explained 7.94% of phenotypic variation in our sample. Genetic scores based on 20~50 SNPs reported by the remaining individual GWA studies explained 3~5% of height variance. These percentages of variance explained were within ranges comparable to the original studies and heterogeneity tests did not detect significant differences in effect size estimates between our study and the original reports, if the estimates were obtained from populations of European descent. CONCLUSIONS/SIGNIFICANCE: We have evaluated the portability of height-associated loci and the overall fitting of estimated effect sizes reported in large cohorts to an isolated population. We found proportions of explained height variability were comparable to multiple reference GWAS in cohorts of European descent. These results indicate similar genetic architecture and comparable effect sizes of height loci among populations of European descent
A Methodological Perspective on Genetic Risk Prediction Studies in Type 2 Diabetes: Recommendations for Future Research
Fueled by the successes of genome-wide association studies, numerous studies have investigated the predictive ability of genetic risk models in type 2 diabetes. In this paper, we review these studies from a methodological perspective, focusing on the variables included in the risk models as well as the study designs and populations investigated. We argue and show that differences in study design and characteristics of the study population have an impact on the observed predictive ability of risk models. This observation emphasizes that genetic risk prediction studies should be conducted in those populations in which the prediction models will ultimately be applied, if proven useful. Of all genetic risk prediction studies to date, only a few were conducted in populations that might be relevant for targeting preventive interventions
Case report: maternal mosaicism resulting in inheritance of a novel GATA6 mutation causing pancreatic agenesis and neonatal diabetes mellitus.
Haploinsufficiency of the GATA6 transcription factor gene was recently found to be the most common cause of pancreatic agenesis, a rare cause of neonatal diabetes mellitus. Although most cases are de novo, we describe three siblings with inherited GATA6 haploinsufficiency and the rare finding of parental mosaicism.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site
- …
