640 research outputs found
Kernel Spectral Clustering and applications
In this chapter we review the main literature related to kernel spectral
clustering (KSC), an approach to clustering cast within a kernel-based
optimization setting. KSC represents a least-squares support vector machine
based formulation of spectral clustering described by a weighted kernel PCA
objective. Just as in the classifier case, the binary clustering model is
expressed by a hyperplane in a high dimensional space induced by a kernel. In
addition, the multi-way clustering can be obtained by combining a set of binary
decision functions via an Error Correcting Output Codes (ECOC) encoding scheme.
Because of its model-based nature, the KSC method encompasses three main steps:
training, validation, testing. In the validation stage model selection is
performed to obtain tuning parameters, like the number of clusters present in
the data. This is a major advantage compared to classical spectral clustering
where the determination of the clustering parameters is unclear and relies on
heuristics. Once a KSC model is trained on a small subset of the entire data,
it is able to generalize well to unseen test points. Beyond the basic
formulation, sparse KSC algorithms based on the Incomplete Cholesky
Decomposition (ICD) and , , Group Lasso regularization are
reviewed. In that respect, we show how it is possible to handle large scale
data. Also, two possible ways to perform hierarchical clustering and a soft
clustering method are presented. Finally, real-world applications such as image
segmentation, power load time-series clustering, document clustering and big
data learning are considered.Comment: chapter contribution to the book "Unsupervised Learning Algorithms
Immunodepletion in xenotransplantation
Xenograft transplantation is perhaps the most immunologically difficult problem in transplantation today. An overwhelming hyperacute rejection reaction (HAR) occurs within minutes of organ implantation. Preformed antibodies are thought to initiate this process. We used a pig-to-dog renal xenograft transplant model and investigated methods of decreasing the severity of hyperacute rejection. Female pigs weighing 15-20 kg were used as donors. Recipients were mongrel dogs weighing 15-25 kg. Experimental dogs were all given a number of treatments of IgG depletion using an antibody removal system (Dupont-Excorim). This machine immunoadsorbs plasma against a column containing immobilized staphylococcal protein A, which is known to bind the IgG Fc receptor. An 84% reduction in the IgG levels and a 71% reduction in IgM levels was achieved. Postoperative assessment was made of urine output, time to onset of HAR, and histopathological examination of the rejected kidneys. Although cross-matches between donor lymphocytes and recipient sera remained strongly positive in the treated dogs, there was a two- to fourfold reduction in the titers. The time to onset of HAR was prolonged in the experimental group, and the urine output was increased slightly. The histopathologic changes in the experimental group generally showed signs of HAR, but of less intensity than in the nonimmunodepleted control group. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted
Identification of Plasmodium falciparum var1CSA and var2CSA domains that bind IgM natural antibodies
Malaria in pregnancy is responsible for maternal anaemia, low-birth-weight babies and infant deaths. Plasmodium falciparum infected erythrocytes are thought to cause placental pathology by adhering to host receptors such as chondroitin sulphate A (CSA). CSA binding infected erythrocytes also bind IgM natural antibodies from normal human serum, a process that may facilitate placental adhesion or promote immune evasion. The parasite ligands that mediate placental adhesion are thought to be members of the variant erythrocyte surface antigen family P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the var genes. Two var gene sub-families, var1CSA and var2CSA, have been identified as parasite CSA binding ligands and are leading candidates for a vaccine to prevent pregnancy-associated malaria. We investigated whether these two var gene subfamilies implicated in CSA binding are also the molecules responsible for IgM natural antibody binding. By heterologous expression of domains in COS-7 cells, we found that both var1CSA and var2CSA PfEMP1 variants bound IgM, and in both cases the binding region was a DBL epsilon domain occurring proximal to the membrane. None of the domains from a control non-IgM-binding parasite (R29) bound IgM when expressed in COS-7 cells. These results show that PfEMP1 is a parasite ligand for non-immune IgM and are the first demonstration of a specific adhesive function for PfEMP1 epsilon type domains
Mediterranean circulation perturbations over the last five centuries: Relevance to past Eastern Mediterranean Transient-type events
The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910 ± 12, 1812 ± 18, 1725 ± 25 and 1580 ± 30 CE. A regional ocean hindcast links SCFR to enhanced deep-water production and in turn to strengthened Mediterranean thermohaline circulation. Independent evidence collected in the Aegean Sea supports this reconstruction, showing that enhanced bottom water ventilation in the Eastern Mediterranean was associated with each SCFR event. Comparison between the records and multi-decadal atmospheric circulation patterns and climatic external forcings indicates that Mediterranean circulation destabilisation occurs during positive North Atlantic Oscillation (NAO) and negative Atlantic Multidecadal Oscillation (AMO) phases, reduced solar activity and strong tropical volcanic eruptions. They may have recurrently produced favourable deep-water formation conditions, both increasing salinity and reducing temperature on multi-decadal time scales
Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?
Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
Nanostring-based multigene assay to predict recurrence for gastric cancer patients after surgery
10.1371/journal.pone.0090133PLoS ONE93-POLN
Numerical modeling of gaseous partially premixed low-swirl lifted flame at elevated pressure
Lifted flames have been investigated in the past years for their benefits in terms of NOx emissions reduction for gas turbine
applications. In a lifted flame, the flame front stabilized on a position that is significantly detached from the nozzle exit, improving the premixing process before the reaction zone. The distance between the flame front and the nozzle exit is called liftoff height and it represents the main parameter that characterize this type of flame. In the present work, a partially premixed lifted flame employing air-methane mixture is investigated through numerical simulation. Indeed, even if lifted jet flames have been widely studied in the literature, there are only a few examples of lifted partially premixed flames. Nevertheless, this kind of flames assumes an important role considering the current gas turbine applications, since their benefits in terms of stability and low pollutant emissions. This study has been performed with LES calculations using a commercial software suite and the numerical results are compared with experimental data coming from a dedicated campaign held at Karlsruher Institute f¨ur Technologie (KIT) on a novel low-swirl injector nozzle. Quenching effects due to strain, curvature and heat loss have been introduced into the combustion model thanks to a correction of the source term in the progress variable equation within the FGM model. The comparison between numerical results and experimental data have been performed in terms of lift-off height and OH* chemiluminescence maps, showing the capability to properly predict the overall flow and to catch flame lift-off even if with an underpredicted height. This points out promising capability of the numerical model in the representation of lifted flames, allowing further investigations of the flame structure otherwise not available from experimental techniques
The identity of Zachaenus roseus Cope, 1890 (Anura: species inquirenda)
Zachaenus roseus Cope, 1890, has puzzled systematists working in southern South America. A single individual, the holotype, has ever been collected and this specimen is in extremely poor preservation condition. Herein, the precise location of the type locality of Z. roseus is determined based on a historical review of the literature. Furthermore, following a careful comparison with all species that inhabit the southern austral forest, and that could potentially correspond to Zachaenus roseus, we conclude that this taxon is placed in the synonym of Eupsophus calcaratus (Günther, 1881).Fil: Lavilla, Esteban Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. Fundación Miguel Lillo; ArgentinaFil: Nuñez, J. J.. Universidad Austral de Chile; ChileFil: Rabanal, F. E.. Universidad Austral de Chhile; ChileFil: Langone, José A.. Museo Nacional de Historia Natural; UruguayFil: de Sá, Rafael O.. University of Richmon; Estados Unido
- …
