220 research outputs found

    Development of DNA Based Active Macro–Materials for Biology and Medicine: A Review

    Get PDF
    DNA was first discovered as the carrier of genetic information for the majority of the known living organisms, encoding the secret of life. Its delicate design based upon double helical structure and base pairing offers a stable and reliable media for storing hereditary codes, laying the foundation for the central dogma (Watson et al. 2003). The impact of this molecule is far reaching into scientific community and our society, as manifested in many fields, for instance, forensics (Budowle et al. 2003), besides medicine. To date, a great deal of research effort has been directed towards understandin

    Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments

    Get PDF
    This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a) nodule detection sensitivity and (b) elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing reasonably high fidelity in conveying stiffness perception to the user

    MOLECULAR MODELING AS A VISUALIZATION TOOL IN DESIGN OF DNA CROSSLINKED POLYACRYLAMIDE

    Get PDF
    ABSTRACT Polymers such as polyacrylamide form a diverse class of biomaterials in use today. The experimental research performed by our group has demonstrated how a critical concentration of crosslinking DNA strands can lead to gel formation in the polyacrylamide. The removal or addition of DNA strands can reverse or significantly increase the stiffness and strength of the gel. DNA is a versatile material for the exploration of nanoscale structures because its hybridization chemistry is very specific. DNA crosslinked gels use end-modified DNA oligonucleotides in the gels. The ability to choose the base sequence in the DNA crosslinks offers an opportunity to engineer the nanoscale structure of this material. However, it is extremely difficult to visualize the sequence of events that occurs when DNA is crosslinked with polyacrylamide. Computer modeling is a tool that enables the researchers to study the structural aspects of the newly engineered DNA crosslinkers. In this study, polyacrylamide gel crosslinked with DNA has been assayed with respect to energy and size using AMBER 7.0 software [1]. Since DNA-crosslinked gels are likely to find a range of applications it is important to know how to tailor the gel composition for a particular application. It is also of interest to know what the composition is that would induce the greatest change in stiffness. The molecular models generated in AMBER survey the mechanical properties of the gel as a function of crosslinker density, polyacrylamide density, and crosslinker length. The structure of an equilibrium state is computed using an explicitly solvated model. Visual inspection of the model determines other mechanical properties of the gel and helps predict chemical interactions. A long-term goal of this work is to use computer assisted modeling techniques to guide the experiments, to predict linker stiffness, and to examine other mechanical properties of the DNA crosslinker
    corecore