1,724 research outputs found
Aeroelastic model helicopter rotor testing in the Langley TDT
Wind-tunnel testing of a properly scaled aeroelastic model helicopter rotor is considered a necessary phase in the design development of new or existing rotor systems. For this reason, extensive testing of aeroelastically scaled model rotors is done in the Transonic Dynamics Tunnel (TDT) located at the NASA Langley Research Center. A unique capability of this facility, which enables proper dynamic scaling, is the use of Freon as a test medium. A description of the TDT and a discussion of the benefits of using Freon as a test medium are presented. A description of the model test bed used, the Aeroelastic Rotor Experimental System (ARES), is also provided and examples of recent rotor tests are cited to illustrate the advantages and capabilities of aeroelastic model rotor testing in the TDT. The importance of proper dynamic scaling in identifying and solving rotorcraft aeroelastic problems, and the importance of aeroelastic testing of model rotor systems in the design of advanced rotor systems are demonstrated
Effects of circadian rhythm phase alteration on physiological and psychological variables: Implications to pilot performance (including a partially annotated bibliography)
The effects of environmental synchronizers upon circadian rhythmic stability in man and the deleterious alterations in performance and which result from changes in this stability are points of interest in a review of selected literature published between 1972 and 1980. A total of 2,084 references relevant to pilot performance and circadian phase alteration are cited and arranged in the following categories: (1) human performance, with focus on the effects of sleep loss or disturbance and fatigue; (2) phase shift in which ground based light/dark alteration and transmeridian flight studies are discussed; (3) shiftwork; (4)internal desynchronization which includes the effect of evironmental factors on rhythmic stability, and of rhythm disturbances on sleep and psychopathology; (5) chronotherapy, the application of methods to ameliorate desynchronization symptomatology; and (6) biorythm theory, in which the birthdate based biorythm method for predicting aircraft accident susceptability is critically analyzed. Annotations are provided for most citations
Weak lensing observations of the "dark" cluster MG2016+112
We investigate the possible existence of a high-redshift (z=1) cluster of
galaxies associated with the QSO lens system MG2016+112. From an ultra-deep R-
and less deep V- and I-band Keck images and a K-band mosaic from UKIRT, we
detect ten galaxies with colors consistent with the lensing galaxy within
225h^{-1} kpc of the z=1.01 lensing galaxy. This represents an overdensity of
more than ten times the number density of galaxies with similar colors in the
rest of the image. We also find a group of seven much fainter objects closely
packed in a group only 27h^{-1} kpc north-west of the lensing galaxy. We
perform a weak lensing analysis on faint galaxies in the R-band image and
detect a mass peak of a size similar to the mass inferred from X-ray
observations of the field, but located 64" northwest of the lensing galaxy.
From the weak lensing data we rule out a similar sized mass peak centered on
the lensing galaxy at the 2 sigma level.Comment: 9 pages, 10 figures, submitted to A&A version with figure 4 at higher
resolution can be downloaded from
http://www.mpa-garching.mpg.de/~clowe/mg2016aa.ps.g
Constraints on changes in fundamental constants from a cosmologically distant OH absorber/emitter
We have detected the four 18cm OH lines from the gravitational
lens toward PMN J0134-0931. The 1612 and 1720 MHz lines are in conjugate
absorption and emission, providing a laboratory to test the evolution of
fundamental constants over a large lookback time. We compare the HI and OH main
line absorption redshifts of the different components in the
absorber and the lens toward B0218+357 to place stringent
constraints on changes in . We obtain
,
consistent with no evolution over the redshift range . The
measurements have a sensitivity of or to fractional
changes in and over a period of Gyr, half the age of
the Universe. These are among the most sensitive current constraints on changes
in .Comment: 4 pages, 3 figures. Final version, with minor changes to match the
version in print in Phys. Rev. Let
Constraints on changes in fundamental constants from a cosmologically distant OH absorber or emitter
We have detected the four 18 cm OH lines from the z∼0.765 gravitational lens toward PMN J0134–0931. The 1612 and 1720 MHz lines are in conjugate absorption and emission, providing a laboratory to test the evolution of fundamental constants over a large lookback time. We compare the HI and OH main line absorption redshifts of the different components in the z∼0.765 absorber and the z∼0.685 lens toward B0218+357 to place stringent constraints on changes in F≡gp[α2/μ]1.57. We obtain [ΔF/F]=(0.44±0.36stat±1.0syst)×10-5, consistent with no evolution over the redshift range 0<z≲0.7. The measurements have a 2σ sensitivity of [Δα/α]<6.7×10-6 or [Δμ/μ]<1.4×10-5 to fractional changes in α and μ over a period of ∼6.5 G yr, half the age of the Universe. These are among the most sensitive constraints on changes in μ
Anomalous Microwave Emission from the HII region RCW175
We present evidence for anomalous microwave emission in the RCW175 \hii
region. Motivated by 33 GHz 13\arcmin resolution data from the Very Small
Array (VSA), we observed RCW175 at 31 GHz with the Cosmic Background Imager
(CBI) at a resolution of 4\arcmin. The region consists of two distinct
components, G29.0-0.6 and G29.1-0.7, which are detected at high signal-to-noise
ratio. The integrated flux density is Jy at 31 GHz, in good
agreement with the VSA. The 31 GHz flux density is Jy
() above the expected value from optically thin free-free emission
based on lower frequency radio data and thermal dust constrained by IRAS and
WMAP data. Conventional emission mechanisms such as optically thick emission
from ultracompact \hii regions cannot easily account for this excess. We
interpret the excess as evidence for electric dipole emission from small
spinning dust grains, which does provide an adequate fit to the data.Comment: 5 pages, 2 figures, submmited to ApJ Letter
Non-detection of HC_(11)N towards TMC-1: constraining the chemistry of large carbon-chain molecules
Bell et al. reported the first detection of the cyanopolyyne HC_(11)N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC_9N and HC_(11)N towards TMC-1. Although we find an HC_9N column density consistent with previous values, HC_(11)N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion–dipole interactions, we are not able to explain the non-detection of HC_(11)N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules
Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>
Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling
PSR J1907+0602: A Radio-Faint Gamma-Ray Pulsar Powering a Bright TeV Pulsar Wind Nebula
We present multiwavelength studies of the 106.6 ms gamma-ray pulsar PSR
J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi
result in a precise position determination for the pulsar of R.A. =
19h07m547(2), decl. = +06:02:16(2) placing the pulsar firmly within the TeV
source extent, suggesting the TeV source is the pulsar wind nebula of PSR
J1907+0602. Pulsed gamma-ray emission is clearly visible at energies from 100
MeV to above 10 GeV. The phase-averaged power-law index in the energy range E >
0.1 GeV is = 1.76 \pm 0.05 with an exponential cutoff energy E_{c} = 3.6 \pm
0.5 GeV. We present the energy-dependent gamma-ray pulsed light curve as well
as limits on off-pulse emission associated with the TeV source. We also report
the detection of very faint (flux density of ~3.4 microJy) radio pulsations
with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 \pm
1.1 cm^{-3}pc. This indicates a distance of 3.2 \pm 0.6 kpc and a
pseudo-luminosity of L_{1400} ~ 0.035 mJy kpc^2. A Chandra ACIS observation
revealed an absorbed, possibly extended, compact <(4 arcsec) X-ray source with
significant non-thermal emission at R.A. = 19h07m54.76, decl. = +06:02:14.6
with a flux of 2.3^{+0.6}_{-1.4} X 10^{-14} erg cm^{-2} s^{-1}. From archival
ASCA observations, we place upper limits on any arcminute scale 2--10 keV X-ray
emission of ~ 1 X 10^{-13} erg cm^{-2} s^{-1}. The implied distance to the
pulsar is compatible with that of the supernova remnant G40.5-0.5, located on
the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud
on the nearer side which we discuss as potential birth sites
Non-detection of HC_(11)N towards TMC-1: constraining the chemistry of large carbon-chain molecules
Bell et al. reported the first detection of the cyanopolyyne HC_(11)N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC_9N and HC_(11)N towards TMC-1. Although we find an HC_9N column density consistent with previous values, HC_(11)N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion–dipole interactions, we are not able to explain the non-detection of HC_(11)N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules
- …
