2,798 research outputs found

    Why does low intensity, long-day lighting promote growth in Petunia, Impatiens, and tomato?

    Get PDF
    Numerous reports demonstrate that low intensity, long-day (LD) lighting treatments can promote growth. However, there are conflicting suggestions as to the mechanisms involved. This study examines the responses of Petunia, Impatiens, and tomato to LD lighting treatments and concludes that no single mechanism can explain the growth promotion observed in each case. Petunia showed the most dramatic response to photoperiod; up to a doubling in dry weight (DW) as a result of increasing daylength from 8 h d–1 to 16 h d–1.This could be explained by an increase in specific leaf area (SLA) comparable to that seen with shading. At low photosynthetic photon flux densities (PPFD), the increased leaf area more than compensated for any loss in photosynthetic capacity per unit leaf area. In Petunia, the response may, in part, have also been due to changes in growth habit. Impatiens and tomato showed less dramatic increases in DW as a result of LD lighting, but no consistent effects on SLA or growth habit were observed. In tomato, increased growth was accompanied by increased chlorophyll content, but this had no significant effect on photosynthesis. In both species, increased growth may have been due to a direct effect of LD lighting on photosynthesis. This is contrary to the generally held view that light of approx. 3 – 4 μmol m–2 s–1 is unlikely to have any significant impact on net photosynthesis. Nevertheless, we show that the relationship between PPFD and net photosynthesis is non-linear at low light levels, and therefore low intensity LD lighting can offset respiration very efficiently. Furthermore, a small increase in photosynthesis will have a greater impact when ambient light levels are low

    A novel tissue inhibitor of metalloproteinases-3 mutation reveals a common molecular phenotype in sorsby's fundus dystrophy

    Get PDF
    Sorsby’s fundus dystrophy (SFD) is a dominantly inherited degenerative disease of the retina that leads to loss of vision in middle age. It has been shown to be caused by mutations in the gene for tissue inhibitor of metalloproteinases-3 (TIMP-3). Five different mutations have previously been identified, all introducing an extra cysteine residue into exon 5 (which forms part of the C-terminal domain) of the TIMP-3 molecule; however, the significance of these mutations to the disease phenotype was unknown. In this report, we describe the expression of several of these mutated genes, together with a previously unreported novel TIMP-3 mutation from a family with SFD that results in truncation of most of the C-terminal domain of the molecule. Despite these differences, all of these molecules are expressed and exhibit characteristics of the normal protein, including inhibition of metalloproteinases and binding to the extracellular matrix. However, unlike wild-type TIMP-3, they all form dimers. These observations, together with the recent finding that expression of TIMP-3 is increased, rather than decreased, in eyes from patients with SFD, provides compelling evidence that dimerized TIMP-3 plays an active role in the disease process by accumulating in the eye. Increased expression of TIMP-3 is also observed in other degenerative retinal diseases, including the more severe forms of agerelated macular degeneration, the most common cause of blindness in the elderly in developed countries. We hypothesize that overexpression of TIMP-3 may prove to be a critical step in the progression of a variety of degenerative retinopathies

    Universal Cellular Automata and Class 4

    Get PDF
    Wolfram has provided a qualitative classification of cellular automata(CA) rules according to which, there exits a class of CA rules (called Class 4) which exhibit complex pattern formation and long-lived dynamical activity (long transients). These properties of Class 4 CA's has led to the conjecture that Class 4 rules are Universal Turing machines i.e. they are bases for computational universality. We describe an embedding of a ``small'' universal Turing machine due to Minsky, into a cellular automaton rule-table. This produces a collection of (k=18,r=1)(k=18,r=1) cellular automata, all of which are computationally universal. However, we observe that these rules are distributed amongst the various Wolfram classes. More precisely, we show that the identification of the Wolfram class depends crucially on the set of initial conditions used to simulate the given CA. This work, among others, indicates that a description of complex systems and information dynamics may need a new framework for non-equilibrium statistical mechanics.Comment: Latex, 10 pages, 5 figures uuencode

    Parametric ordering of complex systems

    Get PDF
    Cellular automata (CA) dynamics are ordered in terms of two global parameters, computable {\sl a priori} from the description of rules. While one of them (activity) has been used before, the second one is new; it estimates the average sensitivity of rules to small configurational changes. For two well-known families of rules, the Wolfram complexity Classes cluster satisfactorily. The observed simultaneous occurrence of sharp and smooth transitions from ordered to disordered dynamics in CA can be explained with the two-parameter diagram

    Quantitative evaluation of polymer gel dosimeters by broadband ultrasound attenuation

    Get PDF
    Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system

    Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map

    Full text link
    Self-adjusting, or adaptive systems have gathered much recent interest. We present a model for self-adjusting systems which treats the control parameters of the system as slowly varying, rather than constant. The dynamics of these parameters is governed by a low-pass filtered feedback from the dynamical variables of the system. We apply this model to the logistic map and examine the behavior of the control parameter. We find that the parameter leaves the chaotic regime. We observe a high probability of finding the parameter at the boundary between periodicity and chaos. We therefore find that this system exhibits adaptation to the edge of chaos.Comment: 3 figure

    Cognitive demands of face monitoring: Evidence for visuospatial overload

    Get PDF
    Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information

    Creation and Reproduction of Model Cells with Semipermeable Membrane

    Full text link
    A high activity of reactions can be confined in a model cell with a semipermeable membrane in the Schl\"ogl model. It is interpreted as a model of primitive metabolism in a cell. We study two generalized models to understand the creation of primitive cell systems conceptually from the view point of the nonlinear-nonequilibrium physics. In the first model, a single-cell system with a highly active state confined by a semipermeable membrane is spontaneously created from an inactive homogeneous state by a stochastic jump process. In the second model, many cell structures are reproduced from a single cell, and a multicellular system is created.Comment: 11 pages, 7 figure

    HD 17156b: A Transiting Planet with a 21.2 Day Period and an Eccentric Orbit

    Full text link
    We report the detection of transits by the 3.1 M_Jup companion to the V=8.17 G0V star HD 17156. The transit was observed by three independant observers on Sept. 9/10, 2007 (two in central Italy and one in the Canary Islands), who obtained detections at confidence levels of 3.0 sigma, 5.3 sigma, and 7.9 sigma, respectively. The observations were carried out under the auspices of the Transitsearch.org network, which organizes follow-up photometric transit searches of known planet-bearing stars during the time intervals when transits are expected to possibly occur. Analyses of the 7.9 sigma data set indicates a transit depth d=0.0062+/-0.0004, and a transit duration t=186+/-5 min. These values are consistent with the transit of a Jupiter-sized planet with an impact parameter b=a*cos(i)/R_star ~ 0.8. This planet occupies a unique regime among known transiting extrasolar planets, both as a result of its large orbital eccentricity (e=0.67) and long orbital period (P=21.2 d). The planet receives a 26-fold variation in insolation during the course of its orbit, which will make it a useful object for characterization of exoplanetary atmospheric dynamics.Comment: Accepted for publication to A&A, 4 pages, 2 figure
    corecore