1,515 research outputs found
The Ontological Basis of Strong Artificial Life
This article concerns the claim that it is possible to create living organisms, not merely models that represent organisms, simply by programming computers ("virtual" strong alife). I ask what sort of things these computer-generated organisms are supposed to be (where are they, and what are they made of?). I consider four possible answers to this question: (a) The organisms are abstract complexes of pure information; (b) they are material objects made of bits of computer hardware; (c) they are physical processes going on inside the computer; and (d) they are denizens of an entire artificial world, different from our own, that the programmer creates. I argue that (a) could not be right, that (c) collapses into (b), and that (d) would make strong alife either absurd or uninteresting. Thus, "virtual" strong alife amounts to the claim that, by programming a computer, one can literally bring bits of its hardware to life
Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map
Self-adjusting, or adaptive systems have gathered much recent interest. We
present a model for self-adjusting systems which treats the control parameters
of the system as slowly varying, rather than constant. The dynamics of these
parameters is governed by a low-pass filtered feedback from the dynamical
variables of the system. We apply this model to the logistic map and examine
the behavior of the control parameter. We find that the parameter leaves the
chaotic regime. We observe a high probability of finding the parameter at the
boundary between periodicity and chaos. We therefore find that this system
exhibits adaptation to the edge of chaos.Comment: 3 figure
Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits
Of the over 800 exoplanets detected to date, over half are on non-circular
orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable
stellar heating, which has implications for the planet's atmospheric dynamical
regime. However, little is known about this dynamical regime, and how it may
influence observations. Therefore, we present a systematic study of hot
Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which
couples a three-dimensional general circulation model with a plane-parallel,
two-stream, non-grey radiative transfer model. In our study, we vary the
eccentricity and orbit-average stellar flux over a wide range. We demonstrate
that the eccentric hot Jupiter regime is qualitatively similar to that of
planets on circular orbits; the planets possess a superrotating equatorial jet
and exhibit large day-night temperature variations. We show that these
day-night heating variations induce momentum fluxes equatorward to maintain the
superrotating jet throughout its orbit. As the eccentricity and/or stellar flux
is increased, the superrotating jet strengthens and narrows, due to a smaller
Rossby deformation radius. For a select number of model integrations, we
generate full-orbit lightcurves and find that the timing of transit and
secondary eclipse viewed from Earth with respect to periapse and apoapse can
greatly affect what we see in infrared (IR) lightcurves; the peak in IR flux
can lead or lag secondary eclipse depending on the geometry. For those planets
that have large day-night temperature variations and rapid rotation rates, we
find that the lightcurves exhibit "ringing" as the planet's hottest region
rotates in and out of view from Earth. These results can be used to explain
future observations of eccentric transiting exoplanets.Comment: 20 pages, 18 figures, 2 tables; Accepted to Ap
Numerical simulations of shocks encountering clumpy regions
We present numerical simulations of the adiabatic interaction of a shock with
a clumpy region containing many individual clouds. Our work incorporates a
sub-grid turbulence model which for the first time makes this investigation
feasible. We vary the Mach number of the shock, the density contrast of the
clouds, and the ratio of total cloud mass to inter-cloud mass within the clumpy
region. Cloud material becomes incorporated into the flow. This "mass-loading"
reduces the Mach number of the shock, and leads to the formation of a dense
shell. In cases in which the mass-loading is sufficient the flow slows enough
that the shock degenerates into a wave. The interaction evolves through up to
four stages: initially the shock decelerates; then its speed is nearly
constant; next the shock accelerates as it leaves the clumpy region; finally it
moves at a constant speed close to its initial speed. Turbulence is generated
in the post-shock flow as the shock sweeps through the clumpy region. Clouds
exposed to turbulence can be destroyed more rapidly than a similar cloud in an
"isolated" environment. The lifetime of a downstream cloud decreases with
increasing cloud-to-intercloud mass ratio. We briefly discuss the significance
of these results for starburst superwinds and galaxy evolution.Comment: 17 pages, 19 figures, accepted for publication in MNRA
Effect of Chaotic Noise on Multistable Systems
In a recent letter [Phys.Rev.Lett. {\bf 30}, 3269 (1995), chao-dyn/9510011],
we reported that a macroscopic chaotic determinism emerges in a multistable
system: the unidirectional motion of a dissipative particle subject to an
apparently symmetric chaotic noise occurs even if the particle is in a
spatially symmetric potential. In this paper, we study the global dynamics of a
dissipative particle by investigating the barrier crossing probability of the
particle between two basins of the multistable potential. We derive
analytically an expression of the barrier crossing probability of the particle
subject to a chaotic noise generated by a general piecewise linear map. We also
show that the obtained analytical barrier crossing probability is applicable to
a chaotic noise generated not only by a piecewise linear map with a uniform
invariant density but also by a non-piecewise linear map with non-uniform
invariant density. We claim, from the viewpoint of the noise induced motion in
a multistable system, that chaotic noise is a first realization of the effect
of {\em dynamical asymmetry} of general noise which induces the symmetry
breaking dynamics.Comment: 14 pages, 9 figures, to appear in Phys.Rev.
Improved Orbital Parameters and Transit Monitoring for HD 156846b
HD 156846b is a Jovian planet in a highly eccentric orbit (e = 0.85) with a
period of 359.55 days. The pericenter passage at a distance of 0.16 AU is
nearly aligned to our line of sight, offering an enhanced transit probability
of 5.4% and a potentially rich probe of the dynamics of a cool planetary
atmosphere impulsively heated during close approach to a bright star (V = 6.5).
We present new radial velocity (RV) and photometric measurements of this star
as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS). The
RV measurements from Keck-HIRES reduce the predicted transit time uncertainty
to 20 minutes, an order of magnitude improvement over the ephemeris from the
discovery paper. We photometrically monitored a predicted transit window under
relatively poor photometric conditions, from which our non-detection does not
rule out a transiting geometry. We also present photometry that demonstrates
stability at the millimag level over its rotational timescale.Comment: 7 pages, 4 figures, accepted for publication in Ap
Initial fixation placement in face images is driven by top-down guidance
The eyes are often inspected first and for longer period during face exploration. To examine whether this saliency of the eye region at the early stage of face inspection is attributed to its local structure properties or to the knowledge of its essence in facial communication, in this study we investigated the pattern of eye movements produced by rhesus monkeys (Macaca mulatta) as they free viewed images of monkey faces. Eye positions were recorded accurately using implanted eye coils, while images of original faces, faces with scrambled eyes, and scrambled faces except for the eyes were presented on a computer screen. The eye region in the scrambled faces attracted the same proportion of viewing time and fixations as it did in the original faces, even the scrambled eyes attracted substantial proportion of viewing time and fixations. Furthermore, the monkeys often made the first saccade towards to the location of the eyes regardless of image content. Our results suggest that the initial fixation placement in faces is driven predominantly by ‘top-down’ or internal factors, such as the prior knowledge of the location of “eyes” within the context of a face
Application of a new small RNA molecule, RNA-LZ-1, as a vaccine adjuvant
Influenza A viruses are important pathogens that cause disease in a wide variety of species leading to economic losses and added burden on health care. Recently, outbreaks of avian influenza viruses in the human population have added to this growing risk of pandemic influenza viruses. Therefore, strategies to address the demands of higher efficiency, immunogenicity, and safety in influenza vaccines must be explored. One strategy which addresses efficiency and immunogenicity is to explore the addition of an adjuvant to influenza vaccines.
Adjuvants are commonly used vaccine components which are included to induce a robust immune response leading to antigen sparing, a broader spectrum of protection and the elimination of a booster. Recently the retinoic acid-inducible gene-I (RIG-I) pathway, which is the natural defense against RNA viruses, has become an attractive target for adjuvant development. In this thesis, we sought to explore the possibility of a small RNA molecule, RNA- LZ-1, identified in our laboratory as a RIG-I agonist as an adjuvant.
This project evaluated the induction of pro-inflammatory cytokines, chemokines, and interferons by RNA-LZ-1 in vitro and in vivo, and tested its ability to induce antigen-specific antibodies when paired with H5N1 and H7N9 inactivated whole influenza viruses. We hypothesized that due to RNA-LZ-1’s binding affinity for RIG-I it will induce a broad spectrum immune response and fortified adaptive response when used as an adjuvant. Overall our results showed that RNA-LZ-1 was capable of inducing activation of a diverse spectrum of inflammatory genes and proteins in vitro and in vivo. In human macrophages and lung epithelial cells RNA-LZ-1 induced significant levels of IFN-β protein and mRNA fold change. We also showed that as early as 3 hours post-injection, RNA-LZ-1 was capable of up-regulating immune genes with the effect dissipating by 48 hours post-injection. These immune genes were grouped as follows cytokines (IL-12α, IL-12β, IL-6, and IL-18), chemokines (MIP-1α, RANTES, MIP-2, MCP-1, and IP-10), and interferons (IFN-α, IFN-β, and IFN-ɣ). The overall immune response observed was skewed towards a Th1 response. In vivo, RNA-LZ-1 was able to induce protective antigen-specific antibodies against H5N1 in comparable levels to the proven VIDO triple adjuvant showing that RNA-LZ-1 is a strong candidate as an adjuvant for influenza vaccines
A framework for the local information dynamics of distributed computation in complex systems
The nature of distributed computation has often been described in terms of
the component operations of universal computation: information storage,
transfer and modification. We review the first complete framework that
quantifies each of these individual information dynamics on a local scale
within a system, and describes the manner in which they interact to create
non-trivial computation where "the whole is greater than the sum of the parts".
We describe the application of the framework to cellular automata, a simple yet
powerful model of distributed computation. This is an important application,
because the framework is the first to provide quantitative evidence for several
important conjectures about distributed computation in cellular automata: that
blinkers embody information storage, particles are information transfer agents,
and particle collisions are information modification events. The framework is
also shown to contrast the computations conducted by several well-known
cellular automata, highlighting the importance of information coherence in
complex computation. The results reviewed here provide important quantitative
insights into the fundamental nature of distributed computation and the
dynamics of complex systems, as well as impetus for the framework to be applied
to the analysis and design of other systems.Comment: 44 pages, 8 figure
- …
