296 research outputs found
Managing polyglot systems metadata with hypergraphs
A single type of data store can hardly fulfill every end-user requirements in the NoSQL world. Therefore, polyglot systems use different types of NoSQL datastores in combination. However, the heterogeneity of the data storage models makes managing the metadata a complex task in such systems, with only a handful of research carried out to address this. In this paper, we propose a hypergraph-based approach for representing the catalog of metadata in a polyglot system. Taking an existing common programming interface to NoSQL systems, we extend and formalize it as hypergraphs for managing metadata. Then, we define design constraints and query transformation rules for three representative data store types. Furthermore, we propose a simple query rewriting algorithm using the catalog itself for these data store types and provide a prototype implementation. Finally, we show the feasibility of our approach on a use case of an existing polyglot system.Peer ReviewedPostprint (author's final draft
MCDAN: a Multi-scale Context-enhanced Dynamic Attention Network for Diffusion Prediction
Information diffusion prediction aims at predicting the target users in the
information diffusion path on social networks. Prior works mainly focus on the
observed structure or sequence of cascades, trying to predict to whom this
cascade will be infected passively. In this study, we argue that user intent
understanding is also a key part of information diffusion prediction. We
thereby propose a novel Multi-scale Context-enhanced Dynamic Attention Network
(MCDAN) to predict which user will most likely join the observed current
cascades. Specifically, to consider the global interactive relationship among
users, we take full advantage of user friendships and global cascading
relationships, which are extracted from the social network and historical
cascades, respectively. To refine the model's ability to understand the user's
preference for the current cascade, we propose a multi-scale sequential
hypergraph attention module to capture the dynamic preference of users at
different time scales. Moreover, we design a contextual attention enhancement
module to strengthen the interaction of user representations within the current
cascade. Finally, to engage the user's own susceptibility, we construct a
susceptibility label for each user based on user susceptibility analysis and
use the rank of this label for auxiliary prediction. We conduct experiments
over four widely used datasets and show that MCDAN significantly overperforms
the state-of-the-art models. The average improvements are up to 10.61% in terms
of Hits@100 and 9.71% in terms of MAP@100, respectively
A Training-Free Plug-and-Play Watermark Framework for Stable Diffusion
Nowadays, the family of Stable Diffusion (SD) models has gained prominence
for its high quality outputs and scalability. This has also raised security
concerns on social media, as malicious users can create and disseminate harmful
content. Existing approaches involve training components or entire SDs to embed
a watermark in generated images for traceability and responsibility
attribution. However, in the era of AI-generated content (AIGC), the rapid
iteration of SDs renders retraining with watermark models costly. To address
this, we propose a training-free plug-and-play watermark framework for SDs.
Without modifying any components of SDs, we embed diverse watermarks in the
latent space, adapting to the denoising process. Our experimental findings
reveal that our method effectively harmonizes image quality and watermark
invisibility. Furthermore, it performs robustly under various attacks. We also
have validated that our method is generalized to multiple versions of SDs, even
without retraining the watermark model
Exact and Consistent Interpretation for Piecewise Linear Neural Networks: A Closed Form Solution
Strong intelligent machines powered by deep neural networks are increasingly
deployed as black boxes to make decisions in risk-sensitive domains, such as
finance and medical. To reduce potential risk and build trust with users, it is
critical to interpret how such machines make their decisions. Existing works
interpret a pre-trained neural network by analyzing hidden neurons, mimicking
pre-trained models or approximating local predictions. However, these methods
do not provide a guarantee on the exactness and consistency of their
interpretation. In this paper, we propose an elegant closed form solution named
to compute exact and consistent interpretations for the family of
Piecewise Linear Neural Networks (PLNN). The major idea is to first transform a
PLNN into a mathematically equivalent set of linear classifiers, then interpret
each linear classifier by the features that dominate its prediction. We further
apply to demonstrate the effectiveness of non-negative and sparse
constraints on improving the interpretability of PLNNs. The extensive
experiments on both synthetic and real world data sets clearly demonstrate the
exactness and consistency of our interpretation.Comment: KDD 201
- …
