105 research outputs found
Le xanthoastrocytome pleomorphe anaplasique - A propos d’un cas
We report a case of anaplastic pleomorphic xanthoastrocytoma occurred in a male of 13 years, who presented a syndrom of intracranial hypertension for a year and a half. CT-scan and MRI revealed a cystic and solid tumor in the left parietal lobe. The surgical resection was total. Histopathological examination demonstrated a pleomorphic xanthoastrocytoma with malignant transformation. Seven months later, the patient has a deterioration of his general condition, the CT revealed a tumor recurrence, which was reoperated. The patient died a few days after surgery. This rare case of anaplastic pleomorphic xanthoastrocytoma is presented, discussed and illustrated in this paper.Nous rapportons un cas de xanthoastrocytome pléomorphe anaplasique chez un garçon de 13 ans. Il présentait un syndrome d’hypertension intracrânienne depuis un an et demi. L’imagerie a visualisé une lésion à double composante kystique et charnue de localisation pariétale gauche. L’exérèse chirurgicale a été totale. L’examen histologique a revélé un xanthoastrocytome pléomorphe anaplasique. Sept mois plus tard, le patient a présenté une altération de l’état général, et le scanner encéphalique a montré une récidive tumorale qui a été réopérée. Le patient est décédé quelques jours après l’intervention
Type II and III Receptors for Immunoglobulin G (IgG) Control the Presentation of Different T Cell Epitopes from Single IgG-complexed Antigens
T cell receptors on CD4+ lymphocytes recognize antigen-derived peptides presented by major histocompatibility complex (MHC) class II molecules. A very limited set of peptides among those that may potentially bind MHC class II is actually presented to T lymphocytes. We here examine the role of two receptors mediating antigen internalization by antigen presenting cells, type IIb2 and type III receptors for IgG (FcγRIIb2 and FcγRIII, respectively), in the selection of peptides for presentation to T lymphocytes. B lymphoma cells expressing recombinant FcγRIIb2 or FcγRIII were used to assess the presentation of several epitopes from two different antigens. 4 out of the 11 epitopes tested were efficiently presented after antigen internalization through FcγRIIb2 and FcγRIII. In contrast, the 7 other epitopes were efficiently presented only when antigens were internalized through FcγRIII, but not through FcγRIIb2. The capacity to present these latter epitopes was transferred to a tail-less FcγRIIb2 by addition of the FcγRIII-associated γ chain cytoplasmic tail. Mutation of a single leucine residue at position 35 of the γ chain cytoplasmic tail resulted in the selective loss of presentation of these epitopes. Therefore, the nature of the receptor that mediates internalization determines the selection of epitopes presented to T lymphocytes within single protein antigens
Dynamics of Major Histocompatibility Complex Class II Compartments during B Cell Receptor–mediated Cell Activation
Antigen recognition by clonotypic B cell receptor (BcR) is the first step of B lymphocytes differentiation into plasmocytes. This B cell function is dependent on efficient major histocompatibility complex (MHC) class II–restricted presentation of BcR-bound antigens. In this work, we analyzed the subcellular mechanisms underlying antigen presentation after BcR engagement on B cells. In quiescent B cells, we found that MHC class II molecules mostly accumulated at the cell surface and in an intracellular pool of tubulovesicular structures, whereas H2-M molecules were mostly detected in distinct lysosomal compartments devoid of MHC class II. BcR stimulation induced the transient intracellular accumulation of MHC class II molecules in newly formed multivesicular bodies (MVBs), to which H2-M was recruited. The reversible downregulation of cathepsin S activity led to the transient accumulation of invariant chain–MHC class II complexes in MVBs. A few hours after BcR engagement, cathepsin S activity increased, the p10 invariant chain disappeared, and MHC class II–peptide complexes arrived at the plasma membrane. Thus, BcR engagement induced the transient formation of antigen-processing compartments, enabling antigen-specific B cells to become effective antigen-presenting cells
Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9.
Despite their roles in intercellular communications, the different populations of extracellular vesicles (EVs) and their secretion mechanisms are not fully characterized: how and to what extent EVs form as intraluminal vesicles of endocytic compartments (exosomes), or at the plasma membrane (PM) (ectosomes) remains unclear. Here we follow intracellular trafficking of the EV markers CD9 and CD63 from the endoplasmic reticulum to their residency compartment, respectively PM and late endosomes. We observe transient co-localization at both places, before they finally segregate. CD9 and a mutant CD63 stabilized at the PM are more abundantly released in EVs than CD63. Thus, in HeLa cells, ectosomes are more prominent than exosomes. By comparative proteomic analysis and differential response to neutralization of endosomal pH, we identify a few surface proteins likely specific of either exosomes (LAMP1) or ectosomes (BSG, SLC3A2). Our work sets the path for molecular and functional discrimination of exosomes and small ectosomes in any cell type
The actin-based motor protein myosin II regulates MHC class II trafficking and BCR-driven antigen presentation
Antigen (Ag) capture and presentation onto major histocompatibility complex (MHC) class II molecules by B lymphocytes is mediated by their surface Ag receptor (B cell receptor [BCR]). Therefore, the transport of vesicles that carry MHC class II and BCR–Ag complexes must be coordinated for them to converge for processing. In this study, we identify the actin-associated motor protein myosin II as being essential for this process. Myosin II is activated upon BCR engagement and associates with MHC class II–invariant chain complexes. Myosin II inhibition or depletion compromises the convergence and concentration of MHC class II and BCR–Ag complexes into lysosomes devoted to Ag processing. Accordingly, the formation of MHC class II–peptides and subsequent CD4 T cell activation are impaired in cells lacking myosin II activity. Therefore, myosin II emerges as a key motor protein in BCR-driven Ag processing and presentation
Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells
The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space
Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells
The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space
Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells
Dendritic cell (DC) migration in peripheral tissues serves two main functions: antigen sampling by immature DCs, and chemokine-guided migration towards lymphatic vessels (LVs) on maturation. These migratory events determine the efficiency of the adaptive immune response. Their regulation by the core cell locomotion machinery has not been determined. Here, we show that the migration of immature DCs depends on two main actin pools: a RhoA mDial-dependent actin pool located at their rear, which facilitates forward locomotion; and a Cdc42 Arp2/3-dependent actin pool present at their front, which limits migration but promotes antigen capture. Following TLR4 MyD88-induced maturation, Arp2/3-dependent actin enrichment at the cell front is markedly reduced. Consequently, mature DCs switch to a faster and more persistent mDial-dependent locomotion mode that facilitates chemotactic migration to LVs and lymph nodes. Thus, the differential use of actin-nucleating machineries optimizes the migration of immature and mature DCs according to their specific function
- …
