4,765 research outputs found

    Validation Studies of the ATLAS Pixel Detector Control System

    Full text link
    The ATLAS pixel detector consists of 1744 identical silicon pixel modules arranged in three barrel layers providing coverage for the central region, and three disk layers on either side of the primary interaction point providing coverage of the forward regions. Once deployed into the experiment, the detector will employ optical data transfer, with the requisite powering being provided by a complex system of commercial and custom-made power supplies. However, during normal performance and production tests in the laboratory, only single modules are operated and electrical readout is used. In addition, standard laboratory power supplies are used. In contrast to these normal tests, the data discussed here was obtained from a multi-module assembly which was powered and read out using production items: the optical data path, the final design power supply system using close to final services, and the Detector Control System (DCS). To demonstrate the functionality of the pixel detector system a stepwise transition was made from the normal laboratory readout and power supply systems to the ones foreseen for the experiment, with validation of the data obtained at each transition.Comment: 8 pages, 8 figures, proceedings for the Pixel2005 worksho

    System Tests of the ATLAS Pixel Detector

    Full text link
    The innermost part of the ATLAS (A Toroidal LHC ApparatuS) experiment at the LHC (Large Hadron Collider) will be a pixel detector, which is presently under construction. Once installed into the experimental area, access will be extremely limited. To ensure that the integrated detector assembly operates as expected, a fraction of the detector which includes the power supplies and monitoring system, the optical readout, and the pixel modules themselves, has been assembled and operated in a laboratory setting for what we refer to as system tests. Results from these tests are presented.Comment: 5 Pages, 9 Figures, to appear in Proceedings of the Eleventh Workshop on Electronics for LHC and Future Experiment

    Expression patterns of transcribed human endogenous retrovirus HERV-K(HML-2) loci in human tissues and the need for a HERV Transcriptome Project

    Get PDF
    Background: A significant proportion of the human genome is comprised of human endogenous retroviruses (HERVs). HERV transcripts are found in every human tissue. Expression of proviruses of the HERV-K(HML-2) family has been associated with development of human tumors, in particular germ cell tumors (GCT). Very little is known about transcriptional activity of individual HML-2 loci in human tissues, though. Results: By employing private nucleotide differences between loci, we assigned ~1500 HML-2 cDNAs to individual HML-2 loci, identifying, in total, 23 transcriptionally active HML-2 proviruses. Several loci are active in various human tissue types. Transcription levels of some HML-2 loci appear higher than those of other loci. Several HML-2 Rec-encoding loci are expressed in GCT and non-GCT tissues. A provirus on chromosome 22q11.21 appears strongly upregulated in pathologic GCT tissues and may explain high HML-2 Gag protein levels in GCTs. Presence of Gag and Env antibodies in GCT patients is not correlated with activation of individual loci. HML-2 proviruses previously reported capable of forming an infectious HML-2 variant are transcriptionally active in germ cell tissue. Our study furthermore shows that Expressed Sequence Tag (EST) data are insufficient to describe transcriptional activity of HML-2 and other HERV loci in tissues of interest. Conclusion: Our, to date, largest-scale study reveals in greater detail expression patterns of individual HML-2 loci in human tissues of clinical interest. Moreover, large-scale, specialized studies are indicated to better comprehend transcriptional activity and regulation of HERVs. We thus emphasize the need for a specialized HERV Transcriptome Project

    The Hardware of the ATLAS Pixel Detector Control System

    Get PDF
    The innermost part of the ATLAS (A Toroidal LHC ApparatuS) experiment will be a pixel detector, built of 1744 individual detector modules. To operate the modules, readout electronics, and other detector components, a complex power supply and control system is necessary. The specific powering and control requirements are described, along with the custom made components of our power supply and control systems. These include remotely programmable Regulator Stations, the power supply system for the optical transceivers, several monitoring units and the Interlock System

    The record of a high-energy event in a mud entrapment on the inner shelf off the Guadiana river

    Get PDF
    Recent environmental changes associated with high-energy events and human impacts were investigated in a mud entrapment confined in the paleo-Guadiana incised valley. Those changes were recorded in a gravity core during the last 2500 years. An erosional event seems to have occurred at ca. 500 cal yr BP but it is not clear how much sediment was removed. This event was followed by an increase in river discharges until ca. 465 cal yr BP while the benthic foraminiferal faunas were dominated by species associated with shallow-water sandy sediments. Upward, sedimentological and benthic foraminiferal variations indicated environmental changes, promoted by variable sediment supplies to the shelf.info:eu-repo/semantics/publishedVersio

    Detector Control System of the ATLAS Insertable B-Layer

    No full text
    soumis à publicationTo improve tracking robustness and precision of the ATLAS inner tracker an additional fourth pixel layer is foreseen, called Insertable B-Layer (IBL). It will be installed between the innermost present Pixel layer and a new smaller beam pipe and is presently under construction. As, once installed into the experiment, no access is available, a highly reliable control system is required. It has to supply the detector with all entities required for operation and protect it at all times. Design constraints are the high power density inside the detector volume, the sensitivity of the sensors against heatups, and the protection of the front end electronics against transients. We present the architecture of the control system with an emphasis on the CO2 cooling system, the power supply system and protection strategies. As we aim for a common operation of pixel and IBL detector, the integration of the IBL control system into the Pixel one will be discussed as well

    Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    Get PDF
    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Towards the final ATLAS Pixel Detector Control System

    Get PDF
    The innermost part of the ATLAS experiment is a pixel detector, built by 1744 individual detector modules. To operate the modules, readout electronics, and other detector components, a complex power supply and detector control system (DCS) is necessary. This includes a large number of crates, which house the different hardware components as well as a PC net where the different control projects are running. To test the final detector after its assembly before it is installed in the ATLAS cavern, a large test system has been set up at CERN, which allows to operate ca. 10 % of the detector in parallel. Since autumn 2006 this system is in permanent operation. As nearly everywhere the final control hardware is used, its reliability could be investigated and the performance of the control software could be studied. After an overview on our DCS hardware, we report on the experience with the control software
    corecore