989 research outputs found
Two phase galaxy formation: The Evolutionary Properties of Galaxies
We use our model for the formation and evolution of galaxies within a
two-phase galaxy formation scenario, showing that the high-redshift domain
typically supports the growth of spheroidal systems, whereas at low redshifts
the predominant baryonic growth mechanism is quiescent and may therefore
support the growth of a disc structure. Under this framework we investigate the
evolving galaxy population by comparing key observations at both low and
high-redshifts, finding generally good agreement. By analysing the evolutionary
properties of this model, we are able to recreate several features of the
evolving galaxy population with redshift, naturally reproducing number counts
of massive star-forming galaxies at high redshifts, along with the galaxy
scaling relations, star formation rate density and evolution of the stellar
mass function. Building upon these encouraging agreements, we make model
predictions that can be tested by future observations. In particular, we
present the expected evolution to z=2 of the super-massive black hole mass
function, and we show that the gas fraction in galaxies should decrease with
increasing redshift in a mass, with more and more evolution going to higher and
higher masses. Also, the characteristic transition mass from disc to bulge
dominated system should decrease with increasing redshift.Comment: 15 pages, 11 figures. Version polished for publication in MNRA
Supermodel Analysis of the Hard X-Ray Excess in the Coma Cluster
The Supermodel provides an accurate description of the thermal contribution
by the hot intracluster plasma which is crucial for the analysis of the hard
excess. In this paper the thermal emissivity in the Coma cluster is derived
starting from the intracluster gas temperature and density profiles obtained by
the Supermodel analysis of X-ray observables: the XMM-Newton temperature
profile and the Rosat brightness distribution. The Supermodel analysis of the
BeppoSAX/PDS hard X-ray spectrum confirms our previous results, namely an
excess at the c.l. of ~4.8sigma and a nonthermal flux of 1.30+-0.40x 10^-11 erg
cm^-2 s^-1 in the energy range 20-80 keV. A recent joint XMM-Newton/Suzaku
analysis reports an upper limit of ~6x10^-12 erg cm^-2 s^-1 in the energy range
20-80 keV for the nonthermal flux with an average gas temperature of 8.45+-0.06
keV, and an excess of nonthermal radiation at a confidence level above 4sigma,
without including systematic effects, for an average XMM-Newton temperature of
8.2 keV in the Suzaku/HXD-PIN FOV, in agreement with our earlier PDS analysis.
Here we present a further evidence of the compatibility between the Suzaku and
BeppoSAX spectra, obtained by our Supermodel analysis of the PDS data, when the
smaller size of the HXD-PIN FOV and the two different average temperatures
derived by XMM-Newton and by the joint XMM-Newton/Suzaku analysis are taken
into account. The consistency of the PDS and HXD-PIN spectra reaffirms the
presence of a nonthermal component in the hard X-ray spectrum of the Coma
cluster. The Supermodel analysis of the PDS data reports an excess at c.l.
above 4sigma also for the higher average temperature of 8.45 keV thanks to the
PDS FOV considerably greater than the HXD-PIN FOV.Comment: 18 pages, 7 figures, accepted for publication in Ap
A Physical Model for Co-evolution of QSOs and of their Spheroidal Hosts
At variance with most semi-analytic models, in the Anti-hierarchical Baryon
Collapse scenario (Granato et al. 2001, 2004) the main driver of the galaxy
formation and evolution is not the merging sequence but are baryon processes.
This approach emphasizes, still in the framework of the hierarchical clustering
paradigm for dark matter halos, feedback processes from supernova explosions
and from active nuclei, that tie together star formation in spheroidal galaxies
and the growth of black holes at their centers. We review some recent results
showing the remarkably successful predictive power of this scenario, which
allows us to account for the evolution with cosmic time of a broad variety of
properties of galaxies and active nuclei, which proved to be very challenging
for competing models.Comment: Invited talk at the Specola Vaticana Workshop on "AGN and Galaxy
Evolution", Castel Gandolfo, 3-6 October 2005, 10 pages, 2 figure
Rat pial microvascular responses to melatonin during bilateral common carotid artery occlusion and reperfusion
The present study assessed the in vivo rat pial microvascular responses induced by melatonin during brain hypoperfusion and reperfusion (RE) injury. Pial microcirculation of male Wistar rats was visualized by fluorescence microscopy through a closed cranial window. Hypoperfusion was induced by bilateral common carotid artery occlusion (BCCAO, 30 min); thereafter, pial microcirculation was observed for 60 min. Arteriolar diameter, permeability increase, leukocyte adhesion to venular walls, perfused capillary length (PCL), and capillary red blood cell velocity (V(RBC) ) were investigated by computerized methods. Melatonin (0.5, 1, 2 mg/kg b.w.) was intravenously administered 10 min before BCCAO and at the beginning of RE. Pial arterioles were classified in five orders according to diameter, length, and branchings. In control group, BCCAO caused decrease in order 2 arteriole diameter (by 17.5 ± 3.0% of baseline) that was reduced by 11.8 ± 1.2% of baseline at the end of RE, accompanied by marked leakage and leukocyte adhesion. PCL and capillary V(RBC) decreased. At the end of BCCAO, melatonin highest dosage caused order 2 arteriole diameter reduction by 4.6 ± 2.0% of baseline. At RE, melatonin at the lower dosages caused different arteriolar responses. The highest dosage caused dilation in order 2 arteriole by 8.0 ± 1.5% of baseline, preventing leakage and leukocyte adhesion, while PCL and V(RBC) increased. Luzindole (4 mg/kg b.w.) prior to melatonin caused order 2 arteriole constriction by 12.0 ± 1.5% of baseline at RE, while leakage, leukocyte adhesion, PCL and V(RBC) were not affected. Prazosin (1 mg/kg b.w.) prior to melatonin did not significantly change melatonin's effects. In conclusion, melatonin caused different responses during hypoperfusion and RE, modulating pial arteriolar tone likely by MT1 and MT2 melatonin receptors while preventing blood-brain barrier changes through its free radical scavenging action
Long term remodeling of rat pial microcirculation after transient middle cerebral artery occlusion and reperfusion.
Objective: The aim of this study was to assess the in vivo structural and functional remodeling of pial arteriolar networks in the ischemic area of rats submitted to transient middle cerebral artery occlusion (MCAO) and different time intervals of reperfusion.
Methods and results: Two closed cranial windows were implanted above the left and right parietal cortex to observe pial microcirculation by fluorescence microscopy. The geometric characteristics of pial arteriolar networks, permeability increase, leukocyte adhesion and capillary density were analyzed after 1 h or 1, 7, 14 or 28 days of reperfusion. MCAO and 1-hour reperfusion caused marked microvascular changes in pial networks. The necrotic core was devoid of vessels, while the penumbra area presented a few arterioles, capillaries and venules with severe neuronal damage. Penumbra microvascular permeability and leukocyte adhesion were pronounced. At 7 days of reperfusion, new pial arterioles were organized in anastomotic vessels, overlapping the ischemic core and in penetrating pial arterioles. Vascular remodeling caused different arteriolar rearrangement up to 28 days of reperfusion and animals gradually regained their motor and sensory functions.
Conclusions: Transient MCAO-induced pial-network remodeling is characterized by arteriolar anastomotic arcades. Remodeling mechanisms appear to be accompanied by an increased expression of nitric oxide synthases
Quasar Luminosity Functions from Joint Evolution of Black Holes and Host Galaxies
We show that our previously proposed anti-hierarchical baryon collapse
scenario for the joint evolution of black holes and host galaxies predicts
quasar luminosity functions at redshifts 1.5<z<6 and local properties in nice
agreement with observations. In our model the quasar activity marks and
originates the transition between an earlier phase of violent and heavily
dust-enshrouded starburst activity promoting rapid black hole growth, and a
later phase of almost passive evolution; the former is traced by the
submillimeter-selected sources, while the latter accounts for the high number
density of massive galaxies at substantial redshifts z>1.5, the population of
Extremely Red Objects, and the properties of local ellipticals.Comment: 15 pages, 8 figures, uses REVTeX 4 + emulateapj.cls and apjfonts.sty.
Version revised following referee's comments. Accepted on Ap
Galaxy cluster outskirts: a universal entropy profile for relaxed clusters?
We fit a functional form for a universal ICM entropy profile to the scaled
entropy profiles of a catalogue of X-ray galaxy cluster outskirts results,
which are all relaxed cool core clusters at redshift below 0.25. We also
investigate the functional form suggested by Lapi et al. and Cavaliere et al.
for the behaviour of the entropy profile in the outskirts and find it to fit
the data well outside 0.3r200 . We highlight the discrepancy in the entropy
profile behaviour in the outskirts between observations and the numerical
simulations of Burns et al., and show that the entropy profile flattening due
to gas clumping calculated by Nagai & Lau is insufficient to match
observations, suggesting that gas clumping alone cannot be responsible for all
of the entropy profile flattening in the cluster outskirts. The entropy
profiles found with Suzaku are found to be consistent with ROSAT, XMM-Newton
and Planck results.Comment: 5 pages, 5 figures. Accepted for publication in MNRA
The Role of the Dust in Primeval Galaxies: A Simple Physical Model for Lyman Break Galaxies and Lyman Alpha Emitters
We explore the onset of star formation in the early Universe, exploiting the
observations of high-redshift Lyman-break galaxies (LBGs) and Lyman alpha
emitters (LAEs), in the framework of the galaxy formation scenario elaborated
by Granato et al. (2004) already successfully tested against the wealth of data
on later evolutionary stages. Complementing the model with a simple, physically
plausible, recipe for the evolution of dust attenuation in metal poor galaxies
we reproduce the luminosity functions (LFs) of LBGs and of LAEs at different
redshifts. This recipe yields a much faster increase with galactic age of
attenuation in more massive galaxies, endowed with higher star formation rates.
These objects have therefore shorter lifetimes in the LAE and LBG phases, and
are more easily detected in the dusty submillimeter bright phase. The short UV
bright lifetimes of massive objects strongly mitigate the effect of the fast
increase of the massive halo density with decreasing redshift, thus accounting
for the weaker evolution of the LBG LF, compared to that of the halo mass
function, and the even weaker evolution between z~6 and z~3 of the LAE LF. LAEs
are on the average expected to be younger, with lower stellar masses, and
associated to less massive halos than LBGs. Finally, we show that the
intergalactic medium can be completely reionized at redshift z~6-7 by massive
stars shining in protogalactic spheroids with halo masses from a few 10^10 to a
few 10^11 M_sun, showing up as faint LBGs with magnitude in the range
-17<M_1350<-20, without resorting to any special stellar initial mass function.Comment: 13 pages, 8 figures, uses REVTeX 4 + emulateapj.cls and apjfonts.sty.
Title changed and text revised following referee's comments. Accepted by Ap
Trigeminocardiac reflex by mandibular extension on rat pial microcirculation: Role of nitric oxide
In the present study we have extended our previous findings about the effects of 10 minutes of passive mandibular extension in anesthetized Wistar rats. By prolonging the observation time to 3 hours, we showed that 10 minutes mandibular extension caused a significant reduction of the mean arterial blood pressure and heart rate respect to baseline values, which persisted up to 160 minutes after mandibular extension. These effects were accompanied by a characteristic biphasic response of pial arterioles: during mandibular extension, pial arterioles constricted and after mandibular extension dilated for the whole observation period. Interestingly, the administration of the opioid receptor antagonist naloxone abolished the vasoconstriction observed during mandibular extension, while the administration of Nω-Nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, abolished the vasodilation observed after mandibular extension. Either drug did not affect the reduction of mean arterial blood pressure and heart rate induced by mandibular extension. By qRT-PCR, we also showed that neuronal nitric oxide synthase gene expression was significantly increased compared with baseline conditions during and after mandibular extension and endothelial nitric oxide synthase gene expression markedly increased at 2 hours after mandibular extension. Finally, western blotting detected a significant increase in neuronal and endothelial nitric oxide synthase protein expression. In conclusion mandibular extension caused complex effects on pial microcirculation involving opioid receptor activation and nitric oxide release by both neurons and endothelial vascular cells at different times
Are standard cell culture conditions adequate for human umbilical cord blood mesenchymal stem cells?
- …
