45 research outputs found

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Crosstalk between NRF2 and HIPK2 shapes cytoprotective responses

    Get PDF
    Homeodomain interacting protein kinase-2 (HIPK2) is a member of the HIPK family of stress-responsive kinases that modulates cell growth, apoptosis, proliferation and development. HIPK2 has several well-characterised tumour suppressor roles, but recent studies suggest it can also contribute to tumour progression, although the underlying mechanisms are unknown. Herein, we have identified novel crosstalk between HIPK2 and the cytoprotective transcription factor NRF2. We show that HIPK2 is a direct transcriptional target of NRF2, identifying a functional NRF2 binding site in the HIPK2 gene locus and demonstrating for the first time a transcriptional mode of regulation for this kinase. In addition, HIPK2 is required for robust NRF2 responsiveness in cells and in vivo. By using both gain-of-function and loss-of-function approaches, we demonstrate that HIPK2 can elicit a cytoprotective response in cancer cells via NRF2. Our results have uncovered a new downstream effector of HIPK2, NRF2, which is frequently activated in human tumours correlating with chemoresistance and poor prognosis. Furthermore, our results suggest that modulation of either HIPK2 levels or activity could be exploited to impair NRF2-mediated signalling in cancer cells, and thus sensitise them to chemotherapeutic drugs.Oncogene advance online publication, 10 July 2017; doi:10.1038/onc.2017.221.</p

    Performance of the ATLAS Trigger System in 2010

    Get PDF
    Proton-proton collisions at sqrt{s} = 7 TeV and heavy ion collisions at sqrt{s_NN} = 2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presente

    Strong pinning in melt-textured YBa2Cu3O7-delta with non superconducting Y2BaCuO5 inclusions.

    No full text
    We report on a detailed study of the temperature and field dependence of the critical current density J(C) (T, H) in the temperature range 5 K - 100 K and fields up to 50 tesla, in high quality melt-textured YBa2Cu3O7 with 20wt% Y2BaCuO5, fabricated by Directional Solidification. From magnetic measurements, J(C) was determined as approximate to 10(6) A/cm(2) at H = 1 tesla and T = 5 K. From the normalised relaxation rate S (T, H) and the pinning potential U (J, H), determined from detailed SQUID measurements, different pinning regimes have been identified, in accordance with 3D collective pinning theory. The kink on U (J, H) and S (T, H) can be described as a transition from a small bundle to a big bundle collective pinning regime. Furthermore, the J(C) (T, H) dependence has been investigated using high pulsed magnetic fields of up to 50 Tesla The estimated irreversibility fields show the potential of these materials for high field applications
    corecore