4,077 research outputs found
The observed day-to-day variability of Mars water vapor
The diurnal variability of atmospheric water vapor as derived from the Viking MAWD data is discussed. The detection of day to day variability of atmospheric water would be a significant finding since it would place constraints on the nature of surface reservoirs. Unfortunately, the diurnal variability seen by the MAWD experiment is well correlated with the occurrence of dust and/or ice hazes, making it difficult to separate real variations from observational effects. Analysis of the day to day variability of water vapor in the Martian atmosphere suggests that the observations are, at certain locations and seasons, significantly affected by the presence of water-ice hazes. Because such effects are generally limited to specific locations, such as Tharsis, Lunae Planum, and the polar cap edge during the spring, the seasonal and latitudinal trends in water vapor that have been previously reported are not significantly affected
MPD thruster technology
MPD (MagnetoPlasmaDynamic) thrusters demonstrated between 2000 and 7000 seconds specific impulse at efficiencies approaching 40 percent, and were operated continuously at power levels over 500 kW. These demonstrated capabilities, combined with the simplicity and robustness of the thruster, make them attractive candidates for application to both unmanned and manned orbit raising, lunar, and planetary missions. To date, however, only a limited number of thruster configurations, propellants, and operating conditions were studied. The present status of MPD research is reviewed, including developments in the measured performance levels and electrode erosion rates. Theoretical studies of the thruster dynamics are also described. Significant progress was made in establishing empirical scaling laws, performance and lifetime limitations and in the development of numerical codes to simulate the flow field and electrode processes
Explicit formulas for the generalized Hermite polynomials in superspace
We provide explicit formulas for the orthogonal eigenfunctions of the
supersymmetric extension of the rational Calogero-Moser-Sutherland model with
harmonic confinement, i.e., the generalized Hermite (or Hi-Jack) polynomials in
superspace. The construction relies on the triangular action of the Hamiltonian
on the supermonomial basis. This translates into determinantal expressions for
the Hamiltonian's eigenfunctions.Comment: 19 pages. This is a recasting of the second part of the first version
of hep-th/0305038 which has been splitted in two articles. In this revised
version, the introduction has been rewritten and a new appendix has been
added. To appear in JP
I can’t give you a brain, but I can give you a diploma
Father Laurence LaPointe, Roman Catholic chaplain at the College for 33 years and known to most as Father Larry, delivers an inspiring address and in his opening remarks, educates those present on the meaning of Baccalaureate.
. . . although the application and audience of the Baccalaureate have morphed over the centuries, the fundamental function remains the same.
First, it is a time for contemplative reflection amid the many activities and festivities associated with Commencement and it draws upon the inspirational writings of many cultures and the diversity of formidable performance skills of the graduates. These days, respecting the religious and philosophical diversity of those participating, the Baccalaureate service draws from a very wide variety of sources for its inspiration.
Second, the Baccalaureate service is also an opportunity for the College to impart some last words of advice to its graduates in its role as alma mater, “Beloved Mother.
The influence of the long-lived quantum Hall potential on the characteristics of quantum devices
Novel hysteretic effects are reported in magneto-transport experiments on
lateral quantum devices. The effects are characterized by two vastly different
relaxation times (minutes and days). It is shown that the observed phenomena
are related to long-lived eddy currents. This is confirmed by torsion-balance
magnetometry measurements of the same 2-dimensional electron gas (2DEG)
material. These observations show that the induced quantum Hall potential at
the edges of the 2DEG reservoirs influences transport through the devices, and
have important consequences for the magneto-transport of all lateral quantum
devices.Comment: 5 pages, 4 figure
Charge Sensing of an Artificial H2+ Molecule
We report charge detection studies of a lateral double quantum dot with
controllable charge states and tunable tunnel coupling. Using an integrated
electrometer, we characterize the equilibrium state of a single electron
trapped in the doubled-dot (artificial H2+ molecule) by measuring the average
occupation of one dot. We present a model where the electrostatic coupling
between the molecule and the sensor is taken into account explicitly. From the
measurements, we extract the temperature of the isolated electron and the
tunnel coupling energy. It is found that this coupling can be tuned between 0
and 60 micro electron-volt in our device.Comment: 5 pages, 4 figures. Revised version with added material. To be
published in Physical Review
Spin-blockade spectroscopy of a two-level artificial molecule
Coulomb and spin blockade spectroscopy investigations have been performed on
an electrostatically defined ``artificial molecule'' connected to spin
polarized leads. The molecule is first effectively reduced to a two-level
system by placing both constituent atoms at a specific location of the level
spectrum. The spin sensitivity of the conductance enables us to identify the
electronic spin-states of the two-level molecule. We find in addition that the
magnetic field induces variations in the tunnel coupling between the two atoms.
The lateral nature of the device is evoked to explain this behavior.Comment: 4 pages, 4 figures; revised version with a minor change in Fig.2 and
additional inset in Fig.3.;accepted by PR
Magnetic structure of the antiferromagnetic half-Heusler compound NdBiPt
We present results of single crystal neutron diffraction experiments on the
rare-earth, half-Heusler antiferromagnet (AFM) NdBiPt. This compound exhibits
an AFM phase transition at ~K with an ordered moment of
~ per Nd atom. The magnetic moments are aligned along
the -direction, arranged in a type-I AFM structure with ferromagnetic
planes, alternating antiferromagnetically along a propagation vector of
. The BiPt (= Ce-Lu) family of materials has been proposed as
candidates of a new family of antiferromagnetic topological insulators (AFTI)
with magnetic space group that corresponds to a type-II AFM structure where
ferromagnetic sheets are stacked along the space diagonal. The resolved
structure makes it unlikely, that NdBiPt qualifies as an AFTI.Comment: As resubmitted to PRB, corrected typos and changed symbols in Fig.
- …
