492 research outputs found
Critical sound attenuation in a diluted Ising system
The field-theoretic description of dynamical critical effects of the
influence of disorder on acoustic anomalies near the temperature of the
second-order phase transition is considered for three-dimensional Ising-like
systems. Calculations of the sound attenuation in pure and dilute Ising-like
systems near the critical point are presented. The dynamical scaling function
for the critical attenuation coefficient is calculated. The influence of
quenched disorder on the asymptotic behaviour of the critical ultrasonic
anomalies is discussed.Comment: 12 RevTeX pages, 4 figure
Eigenvalue estimates for non-selfadjoint Dirac operators on the real line
We show that the non-embedded eigenvalues of the Dirac operator on the real
line with non-Hermitian potential lie in the disjoint union of two disks in
the right and left half plane, respectively, provided that the of
is bounded from above by the speed of light times the reduced Planck
constant. An analogous result for the Schr\"odinger operator, originally proved
by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For
massless Dirac operators, the condition on implies the absence of nonreal
eigenvalues. Our results are further generalized to potentials with slower
decay at infinity. As an application, we determine bounds on resonances and
embedded eigenvalues of Dirac operators with Hermitian dilation-analytic
potentials
Experimental study of direct photon emission in K- --> pi- pi0 gamma decay using ISTRA+ detector
The branching ratio in the charged-pion kinetic energy region of 55 to 90 MeV
for the direct photon emission in the K- --> pi- pi0 gamma decay has been
measured using in-flight decays detected with the ISTRA+ setup operating in the
25 GeV/c negative secondary beam of the U-70 PS. The value
Br(DE)=[0.37+-0.39(stat)+-0.10(syst)]*10^(-5) obtained from the analysis of 930
completely reconstructed events is consistent with the average value of two
stopped-kaon experiments, but it differs by 2.5 standard deviations from the
average value of three in-flight-kaon experiments. The result is also compared
with recent theoretical predictions.Comment: 13 pages, 8 figure
Lieb-Thirring inequalities for geometrically induced bound states
We prove new inequalities of the Lieb-Thirring type on the eigenvalues of
Schr\"odinger operators in wave guides with local perturbations. The estimates
are optimal in the weak-coupling case. To illustrate their applications, we
consider, in particular, a straight strip and a straight circular tube with
either mixed boundary conditions or boundary deformations.Comment: LaTeX2e, 14 page
Upper and lower limits on the number of bound states in a central potential
In a recent paper new upper and lower limits were given, in the context of
the Schr\"{o}dinger or Klein-Gordon equations, for the number of S-wave
bound states possessed by a monotonically nondecreasing central potential
vanishing at infinity. In this paper these results are extended to the number
of bound states for the -th partial wave, and results are also
obtained for potentials that are not monotonic and even somewhere positive. New
results are also obtained for the case treated previously, including the
remarkably neat \textit{lower} limit with (valid in the Schr\"{o}dinger case, for a class of potentials
that includes the monotonically nondecreasing ones), entailing the following
\textit{lower} limit for the total number of bound states possessed by a
monotonically nondecreasing central potential vanishing at infinity: N\geq
\{\{(\sigma+1)/2\}\} {(\sigma+3)/2\} \}/2 (here the double braces denote of
course the integer part).Comment: 44 pages, 5 figure
Lower order terms in Szego type limit theorems on Zoll manifolds
This is a detailed version of the paper math.FA/0212273. The main motivation
for this work was to find an explicit formula for a "Szego-regularized"
determinant of a zeroth order pseudodifferential operator (PsDO) on a Zoll
manifold. The idea of the Szego-regularization was suggested by V. Guillemin
and K. Okikiolu. They have computed the second term in a Szego type expansion
on a Zoll manifold of an arbitrary dimension. In the present work we compute
the third asymptotic term in any dimension. In the case of dimension 2, our
formula gives the above mentioned expression for the Szego-redularized
determinant of a zeroth order PsDO. The proof uses a new combinatorial
identity, which generalizes a formula due to G.A.Hunt and F.J.Dyson. This
identity is related to the distribution of the maximum of a random walk with
i.i.d. steps on the real line. The proof of this combinatorial identity
together with historical remarks and a discussion of probabilistic and
algebraic connections has been published separately.Comment: 39 pages, full version, submitte
- …
