5,728 research outputs found

    Reducing memory requirements for large size LBM simulations on GPUs

    Get PDF
    The scientific community in its never-ending road of larger and more efficient computational resources is in need of more efficient implementations that can adapt efficiently on the current parallel platforms. Graphics processing units are an appropriate platform that cover some of these demands. This architecture presents a high performance with a reduced cost and an efficient power consumption. However, the memory capacity in these devices is reduced and so expensive memory transfers are necessary to deal with big problems. Today, the lattice-Boltzmann method (LBM) has positioned as an efficient approach for Computational Fluid Dynamics simulations. Despite this method is particularly amenable to be efficiently parallelized, it is in need of a considerable memory capacity, which is the consequence of a dramatic fall in performance when dealing with large simulations. In this work, we propose some initiatives to minimize such demand of memory, which allows us to execute bigger simulations on the same platform without additional memory transfers, keeping a high performance. In particular, we present 2 new implementations, LBM-Ghost and LBM-Swap, which are deeply analyzed, presenting the pros and cons of each of them.This project was funded by the Spanish Ministry of Economy and Competitiveness (MINECO): BCAM Severo Ochoa accreditation SEV-2013-0323, MTM2013-40824, Computación de Altas Prestaciones VII TIN2015-65316-P, by the Basque Excellence Research Center (BERC 2014-2017) pro- gram by the Basque Government, and by the Departament d' Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació i Entorns d' Execució Paral·lels (2014-SGR-1051). We also thank the support of the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT) and NVIDIA GPU Research Center program for the provided resources, as well as the support of NVIDIA through the BSC/UPC NVIDIA GPU Center of Excellence.Peer ReviewedPostprint (author's final draft

    Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system

    Full text link
    We demonstrate quantum Hall resistance measurements with metrological accuracy in a small cryogen-free system operating at a temperature of around 3.8K and magnetic fields below 5T. Operating this system requires little experimental knowledge or laboratory infrastructure, thereby greatly advancing the proliferation of primary quantum standards for precision electrical metrology. This significant advance in technology has come about as a result of the unique properties of epitaxial graphene on SiC.Comment: 15 pages, 9 figure

    Functional responses of methanogenic archaea to syntrophic growth.

    Get PDF
    Methanococcus maripaludis grown syntrophically with Desulfovibrio vulgaris was compared with M. maripaludis monocultures grown under hydrogen limitation using transcriptional, proteomic and metabolite analyses. These measurements indicate a decrease in transcript abundance for energy-consuming biosynthetic functions in syntrophically grown M. maripaludis, with an increase in transcript abundance for genes involved in the energy-generating central pathway for methanogenesis. Compared with growth in monoculture under hydrogen limitation, the response of paralogous genes, such as those coding for hydrogenases, often diverged, with transcripts of one variant increasing in relative abundance, whereas the other was little changed or significantly decreased in abundance. A common theme was an apparent increase in transcripts for functions using H(2) directly as reductant, versus those using the reduced deazaflavin (coenzyme F(420)). The greater importance of direct reduction by H(2) was supported by improved syntrophic growth of a deletion mutant in an F(420)-dependent dehydrogenase of M. maripaludis. These data suggest that paralogous genes enable the methanogen to adapt to changing substrate availability, sustaining it under environmental conditions that are often near the thermodynamic threshold for growth. Additionally, the discovery of interspecies alanine transfer adds another metabolic dimension to this environmentally relevant mutualism

    Heterotic Line Bundle Standard Models

    Get PDF
    In a previous publication, arXiv:1106.4804, we have found 200 models from heterotic Calabi-Yau compactifications with line bundles, which lead to standard models after taking appropriate quotients by a discrete symmetry and introducing Wilson lines. In this paper, we construct the resulting standard models explicitly, compute their spectrum including Higgs multiplets, and analyze some of their basic properties. After removing redundancies we find about 400 downstairs models, each with the precise matter spectrum of the supersymmetric standard model, with one, two or three pairs of Higgs doublets and no exotics of any kind. In addition to the standard model gauge group, up to four Green-Schwarz anomalous U(1) symmetries are present in these models, which constrain the allowed operators in the four-dimensional effective supergravity. The vector bosons associated to these anomalous U(1) symmetries are massive. We explicitly compute the spectrum of allowed operators for each model and present the results, together with the defining data of the models, in a database of standard models accessible at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html. Based on these results we analyze elementary phenomenological properties. For example, for about 200 models all dimension four and five proton decay violating operators are forbidden by the additional U(1) symmetries.Comment: 55 pages, Latex, 3 pdf figure

    Observation of J/ψppˉa0(980)J/\psi \rightarrow p\bar{p}a_{0}(980) at BESIII

    Full text link
    Using 2.25×1082.25\times10^{8} J/ψJ/\psi events collected with the BESIII detector at the BEPCII storage rings, we observe for the first time the process J/ψppˉa0(980)J/\psi\rightarrow p\bar{p}a_{0}(980), a0(980)π0ηa_{0}(980)\rightarrow \pi^{0}\eta with a significance of 6.5σ6.5\sigma (3.2σ3.2\sigma including systematic uncertainties). The product branching fraction of J/ψppˉa0(980)ppˉπ0ηJ/\psi\rightarrow p\bar{p}a_{0}(980)\rightarrow p\bar{p}\pi^{0}\eta is measured to be (6.8±1.2±1.3)×105(6.8\pm1.2\pm1.3)\times 10^{-5}, where the first error is statistical and the second is systematic. This measurement provides information on the a0a_{0} production near threshold coupling to ppˉp\bar{p} and improves the understanding of the dynamics of J/ψJ/\psi decays to four body processes.Comment: 8 pages, 7 figure

    Measurement of the e+eπ+π\mathrm e^+\mathrm e^-\rightarrow\mathrm\pi^+\mathrm\pi^- Cross Section between 600 and 900 MeV Using Initial State Radiation

    Get PDF
    We extract the e+eπ+πe^+e^-\rightarrow \pi^+\pi^- cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb1^{-1} taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor Fπ2|F_\pi|^2 as well as the contribution of the measured cross section to the leading order hadronic vacuum polarization contribution to (g2)μ(g-2)_\mu. We find this value to be aμππ,LO(600900  MeV)=(368.2±2.5stat±3.3sys)1010a_\mu^{\pi\pi,\rm LO}(600-900\;\rm MeV) = (368.2 \pm 2.5_{\rm stat} \pm 3.3_{\rm sys})\cdot 10^{-10}.Comment: 14 pages, 7 figures, accepted by PL

    Precision measurement of the D0D^{*0} decay branching fractions

    Full text link
    Using 482 pb1^{-1} of data taken at s=4.009\sqrt{s}=4.009 GeV, we measure the branching fractions of the decays of D0D^{*0} into D0π0D^0\pi^0 and D0γD^0\gamma to be \BR(D^{*0} \to D^0\pi^0)=(65.5\pm 0.8\pm 0.5)% and \BR(D^{*0} \to D^0\gamma)=(34.5\pm 0.8\pm 0.5)% respectively, by assuming that the D0D^{*0} decays only into these two modes. The ratio of the two branching fractions is \BR(D^{*0} \to D^0\pi^0)/\BR(D^{*0} \to D^0\gamma) =1.90\pm 0.07\pm 0.05, which is independent of the assumption made above. The first uncertainties are statistical and the second ones systematic. The precision is improved by a factor of three compared to the present world average values

    Measurement of the Matrix Elements for the Decays ηπ+ππ0\eta \rightarrow \pi^{+}\pi^{-}\pi^0 and η/ηπ0π0π0\eta/\eta^{\prime}\rightarrow\pi^0\pi^0\pi^0

    Full text link
    Based on a sample of 1.31×1091.31 \times 10^9 J/ψJ/\psi events collected with the BESIII detector at the BEPCII collider, Dalitz plot analyses of selected 79,625 ηπ+ππ0\eta\rightarrow\pi^{+}\pi^{-}\pi^0 events, 33,908 ηπ0π0π0\eta\rightarrow\pi^0\pi^0\pi^0 events and 1,888 ηπ0π0π0\eta^{\prime}\rightarrow\pi^0\pi^0\pi^0 events are performed. The measured matrix elements of ηπ+ππ0\eta\rightarrow\pi^+\pi^-\pi^0 are in reasonable agreement with previous measurements. The Dalitz plot slope parameters of ηπ0π0π0\eta\rightarrow\pi^0\pi^0\pi^0 and ηπ0π0π0\eta^{\prime}\rightarrow\pi^0\pi^0\pi^0 are determined to be 0.055±0.014±0.004-0.055 \pm 0.014 \pm 0.004 and 0.640±0.046±0.047-0.640 \pm 0.046 \pm 0.047, respectively, where the first uncertainties are statistical and the second systematic. Both values are consistent with previous measurements, while the precision of the latter one is improved by a factor of three. Final state interactions are found to have an important role in those decays.Comment: 12 pages, 7 figure
    corecore