421 research outputs found

    Influence of growth temperature on the vortex pinning properties of pulsed laser deposited YBa(2)Cu(3)O(7-x) thin films

    Get PDF
    Epitaxial high-temperature superconducting YBa(2)Cu(3)O(7-x) thin films grown on 2 degrees miscut (001) (LaAlO(3))(0.3)-(SrAl(0.5)Ta(0.5)O(3))(0.7) substrates by pulsed laser deposition show significant and systematic changes in flux pinning properties on changing the substrate temperature from 730 to 820 degrees C. The bulk pinning force is highest for the 760 degrees C growth, rising to a maximum of 4.4 GN/m(3) at 77 K, though there are indications that vortex pinning strength is even higher for the 730 degrees C growth once allowance for the current-blocking effects of a-axis oriented grains is made. Cross-sectional transmission electron microscope images show that the density of antiphase boundaries, stacking faults, and edge dislocations increases strongly with decreasing growth temperature, and is highest at 730 degrees C. In spite of the enhanced density of the pinning defects mentioned above, their vortex pinning effect is still much smaller than for insulating nanoparticles of high density and optimum size, where pinning forces can be four to five times higher.open121

    Significant enhancement of upper critical fields by doping and strain in Fe-based superconductors

    Full text link
    We report measurements of Hc2(T) up to 85 Tesla on Ba1-xKxAs2Fe2 single crystals and FeSe1-xTex films tuned by doping and strain. We observed an Hc2 enhancement by nearly 25 T at 30 K for the optimally-doped Ba1-xKxAs2Fe2 as compared to the previous results and extraordinarily high slopes dHc2/dT = 250-500 T/K near Tc in FeSe1-xTex indicating an almost complete suppression of the orbital pair-breaking. Theoretical analysis of Hc2(T) in FeSe1-xTex and the optimally doped Ba1-xKxAs2Fe2 predicts an inhomogeneous Fulde-Ferrel-Larkin-Ovchinnikov state for H//ab and T < 3-10 K, and shows that Hc2 in multiband Fe based superconductor can be enhanced by doping and strain much more effectively than by the conventional way of increasing disorder.Comment: Accepted for publication in Physical Review

    Effect of grain refinement on enhancing critical current density and upper critical field in undoped MgB2 ex-situ tapes

    Full text link
    Ex-situ Powder-In-Tube MgB2 tapes prepared with ball-milled, undoped powders showed a strong enhancement of the irreversibility field H*, the upper critical field Hc2 and the critical current density Jc(H) together with the suppression of the anisotropy of all of these quantities. Jc reached 104 A/cm2 at 4.2 K and 10 T, with an irreversibility field of about 14 T at 4.2 K, and Hc2 of 9 T at 25 K, high values for not-doped MgB2. The enhanced Jc and H* values are associated with significant grain refinement produced by milling of the MgB2 powder, which enhances grain boundary pinning, although at the same time also reducing the connectivity from about 12% to 8%. Although enhanced pinning and diminished connectivity are in opposition, the overall influence of ball milling on Jc is positive because the increased density of grains with a size comparable with the mean free path produces strong electron scattering that substantially increases Hc2, especially Hc2 perpendicular to the Mg and B planes.Comment: 26 pages, 9 figures, submitted to J. Appl. Phy

    Observation of a coherence peak and pair-breaking effects in THz conductivity of BaFe22x_{2-2x}Co2x_{2x}As2_2

    Full text link
    We report a study of high quality pnictide superconductor BaFe1.84_{1.84}Co0.16_{0.16}As2_2 thin films using time-domain THz spectroscopy. Near Tc_c we find evidence for a coherence peak and qualitative agreement with the weak-coupling Mattis-Bardeen form of the conductivity. At low temperature, we find that the real part of the THz conductivity is not fully suppressed and σ2\sigma_2 is significantly smaller than the Matthis-Bardeen expectation. The temperature dependence of the penetration depth λ\lambda follows a power law with an unusually high exponent of 3.1. We interpret these results as consistent with impurity scattering induced pair-breaking. Taken together our results are strong evidence for an extended s±\pm symmetry order parameter.Comment: 4.2 pages, 4 figures, submitted. v2: references format corrected, no change to tex

    Significant enhancement of irreversibility field in clean-limit bulk MgB2

    Full text link
    Low resistivity ("clean") MgB2 bulk samples annealed in Mg vapor show an increase in upper critical field Hc2(T) and irreversibility field Hirr(T) by a factor of 2 in both transport and magnetic measurements. The best sample displayed Hirr above 14 T at 4.2 K and 6 T at 20 K. These changes were accompanied by an increase of the 40 K resistivity from 1.0 to 18 microohm-cm and a lowering of the resistivity ratio from 15 to 3, while the critical temperature Tc decreased by only 1-2 K. These results point the way to make prepare MgB2 attractive for magnet applications.Comment: 3 pages, 4 figures, submitted to Applied Physics Letter

    Artificial and self-assembled pinning centers in Ba(Fe1-xCox)2As2 thin films as a route to very high current density

    Full text link
    We report on the superior vortex pinning of single and multilayer Ba(Fe1-xCox)2As2 thin films with self-assembled c-axis and artificially introduced ab-plane pins. Ba(Fe1-xCox)2As2 can accept a very high density of pins (15-20 vol%) without Tc suppression. The matching field is greater than 12 T, producing a significant enhancement of the critical current density Jc, an almost isotropic Jc (Theta,20T) > 10^5 A/cm2, and global pinning force density Fp of about 50 GN/m^3. This scenario strongly differs from the high temperature cuprates where the addition of pins without Tc suppression is limited to 2-4 vol%, leading to small HIrr enhancements and improved Jc only below 3-5 Tesla.Comment: 20 pages,8 figures. Accepted for publication in Physical Review

    Development of high critical current density in multifilamentary round-wire Bi2Sr2CaCu2O8+x by strong overdoping

    Full text link
    Bi2Sr2CaCu2O8+x is the only cuprate superconductor that can be made into a round-wire conductor form with a high enough critical current density Jc for applications. Here we show that the Jc(5 T,4.2 K) of such Ag-sheathed filamentary wires can be doubled to more than 1.4x10^5 A/cm^2 by low temperature oxygenation. Careful analysis shows that the improved performance is associated with a 12 K reduction in transition temperature Tc to 80 K and a significant enhancement in intergranular connectivity. In spite of the macroscopically untextured nature of the wire, overdoping is highly effective in producing high Jc values.Comment: 4 figure
    corecore