2,125 research outputs found

    Evaluation of Depth-frequency Equations for Determining Flood Depths

    Get PDF
    published or submitted for publicationis peer reviewedOpe

    Draft genome sequence of Colletotrichum acutatum sensu lato (Colletotrichum fioriniae)

    Get PDF
    In addition to its economic impact, Colletotrichum acutatum sensu lato is an interesting model for molecular investigations due to the diversity of host-determined specialization and reproductive lifestyles within the species complex. The pathogen Colletotrichum fioriniae forms part of this species complex and causes anthracnose in a wide range of crops and wild plants worldwide. Some members of this species have also been reported to be entomopathogenic. Here, we report the draft genome sequence of a heterothallic reference isolate of C. fioriniae (strain PJ7). This sequence provides a range of new resources that serve as a useful platform for further research in the field

    Wavelet analysis of poorly-focused ultrasonic signal of pressure tube inspection in nuclear industry

    Get PDF
    Pressure tube fabrication and installment challenges combined with natural sagging over time can produce issues with probe alignment for pressure tube inspection of the primary circuit of CANDU reactors. The ability to extract accurate defect depth information from poorly-focused ultrasonic signals would reduce additional inspection procedures, which leads to a significant time and cost saving. Currently, the defect depth measurement protocol is to simply calculate the time difference between the peaks of the echo signals from the tube surface and the defect from a single element probe focused at the back-wall depth. When alignment issues are present, incorrect focusing results in interference within the returning echo signal. This paper proposes a novel wavelet analysis method that employs the Haar wavelet to decompose the original poorly focused A-scan signal and reconstruct detailed information based on a selected high frequency component range within the bandwidth of the transducer. Compared to the original signal, the wavelet analysis method provides additional characteristic defect information and an improved estimate of defect depth with errors less than 5%

    An expert-systems approach to automatically determining flaw depth within CANDU pressure tubes

    Get PDF
    Delayed Hydride Cracking (DHC) is a crack growth mechanism that occurs in zirconium alloys, including the pressure tubes of CANDU reactors. DHC is caused by hydrogen in solution in zirconium components being diffused to any flaws present, resulting in an increased concentration of hydrogen within these flaws. An increased hydrogen concentration can lead to brittleness, followed by cracking, in high-stress regions of a pressure tube. Regular in-service ultrasonic inspection of CANDU pressure tubes aim to locate and classify any flaws that pose a potential for DHC initiation. A common approach to inspection is the use of a bespoke tool containing multiple ultrasonic transducers to ensure that each point on the pressure tube is inspected from a minimum of three angles during a scan. All flaws from within the inspected pressure tubes must be characterized prior to restarting the reactor, thus the time-consuming analysis process lies on the critical outage path. This process is manually intensive and often requires a significant amount of expert knowledge. A modular system to automatically process outage data to provide decision support to analysts has been developed. This system saves time on the critical outage path while providing repeatable and explicable measurements. Part of the analysis process requires the depth of all flaws to be measured, which is often the most time consuming stage of the analysis process. This paper describes an approach that utilizes captured analysts knowledge to perform automatic flaw depth estimation

    Multidisciplinary oil spill modeling to protect coastal communities and the environment of the Eastern Mediterranean Sea

    Get PDF
    We present new mathematical and geological models to assist civil protection authorities in the mitigation of potential oil spill accidents in the Eastern Mediterranean Sea. Oil spill simulations for 19 existing offshore wells were carried out based on novel and high resolution bathymetric, meteorological, oceanographic, and geomorphological data. The simulations show a trend for east and northeast movement of oil spills into the Levantine Basin, affecting the coastal areas of Israel, Lebanon and Syria. Oil slicks will reach the coast in 1 to 20 days, driven by the action of the winds, currents and waves. By applying a qualitative analysis, seabed morphology is for the first time related to the direction of the oil slick expansion, as it is able to alter the movement of sea currents. Specifically, the direction of the major axis of the oil spills, in most of the cases examined, is oriented according to the prevailing azimuth of bathymetric features. This work suggests that oil spills in the Eastern Mediterranean Sea should be mitigated in the very few hours after their onset, and before wind and currents disperse them. We explain that protocols should be prioritized between neighboring countries to mitigate any oil spills

    Hybrid simulation model of ultrasonic inspection of pressure tubes in nuclear industry

    Get PDF
    Pressure tube inspection within CANDU nuclear reactors is a critical maintenance operation to identify and track the growth of defects within the tube. Current inspection approaches utilising ultrasonic techniques are technically challenging, which cause the whole inspection process to be resource intensive and expensive to implement. This paper will describe the initial stages in the development of a simulation approach for the ultrasonic inspection methodology to research advanced solutions with the objective of improving the inspection accuracy. Zirconium tubes with a thickness of 4.3mm and a required measurement accuracy of defect depth of 0.1mm require the use of high frequency ultrasonic transducers. The finite element modelling of high frequencies is challenging due to the increased mesh requirements to resolve the small wavelengths and the large propagation distance which can cause numerical dispersion. Hence, a 2D finite element hybrid model is developed in PZFlex software to overcome this difficulty with five subsequent components containing both finite element models and analytical solutions: ultrasound transmission; transmission extrapolation (wave propagation); target interaction; echo wave extrapolation and ultrasonic reception. To test the capability of defect inspection using the hybrid model, a slot with a depth of 1mm is introduced in the model. The depth information was calculated from the time-of-flight between the reflections of the tube surface and the slot. The predicted modelled depth estimates produces errors of less than 20micron for both 10MHz and 20MHz probe configurations validating the hybrid modelling approach. Moreover, experimental validation of the hybrid modelling approach is demonstrated

    Data-driven analysis of ultrasonic pressure tube inspection data

    Get PDF
    Pressure tubes are critical components of the CANDU reactors and other pressurized heavy water type reactors, as they contain the nuclear fuel and the coolant. Manufacturing flaws, as well as defects developed during the in-service operation, can lead to coolant leakage and can potentially damage the reactor. The current inspection process of these flaws is based on manually analyzing ultrasonic data received from multiple probes during planned, statutory outages. Recent advances on ultrasonic inspection tools enable the provision of high resolution data of significantly large volumes. This is highlighting the need for an efficient autonomous signal analysis process. Typically, the automation of ultrasonic inspection data analysis is approached by knowledge-based or supervised data-driven methods. This work proposes an unsupervised data-driven framework that requires no explicit rules, nor individually labeled signals. The framework follows a two-stage clustering procedure that utilizes the DBSCAN density-based clustering algorithm and aims to provide decision support for the assessment of potential defects in a robust and consistent way. Nevertheless, verified defect dimensions are essential in order to assess the results and train the framework for unseen defects. Initial results of the implementation are presented and discussed, with the method showing promise as a means of assessing ultrasonic inspection data

    The gauge theory of dislocations: a nonuniformly moving screw dislocation

    Full text link
    We investigate the nonuniform motion of a straight screw dislocation in infinite media in the framework of the translational gauge theory of dislocations. The equations of motion are derived for an arbitrary moving screw dislocation. The fields of the elastic velocity, elastic distortion, dislocation density and dislocation current surrounding the arbitrarily moving screw dislocation are derived explicitely in the form of integral representations. We calculate the radiation fields and the fields depending on the dislocation velocities.Comment: 12 page
    corecore