95 research outputs found

    The QCD Coupling Constant

    Get PDF
    This paper presents a summary of the current status of determinations of the strong coupling constant alpha_s. A detailed description of the definition, scale dependence and inherent theoretical ambiguities is given. The various physical processes that can be used to determine alpha_s are reviewed and attention is given to the uncertainties, both theoretical and experimental.Comment: 56 page

    Notes on Operator Equations of Supercurrent Multiplets and the Anomaly Puzzle in Supersymmetric Field Theories

    Full text link
    Recently, Komargodski and Seiberg have proposed a new type of supercurrent multiplet which contains the energy-momentum tensor and the supersymmetry current consistently. In this paper we study quantum properties of the supercurrent in renormalizable field theories. We point out that the new supercurrent gives a quite simple resolution to the classic problem, called the anomaly puzzle, that the Adler-Bardeen theorem applied to an R-symmetry current is inconsistent with all order corrections to β\beta functions. We propose an operator equation for the supercurrent in all orders of perturbation theory, and then perform several consistency checks of the equation. The operator equation we propose is consisitent with the one proposed by Shifman and Vainshtein, if we take some care in interpreting the meaning of non-conserved currents.Comment: 28 pages; v2:clarifications and references added, some minor change

    Wilson Expansion of QCD Propagators at Three Loops: Operators of Dimension Two and Three

    Full text link
    In this paper we construct the Wilson short distance operator product expansion for the gluon, quark and ghost propagators in QCD, including operators of dimension two and three, namely, A^2, m^2, m A^2, \ovl{\psi} \psi and m^3. We compute analytically the coefficient functions of these operators at three loops for all three propagators in the general covariant gauge. Our results, taken in the Landau gauge, should help to improve the accuracy of extracting the vacuum expectation values of these operators from lattice simulation of the QCD propagators.Comment: 20 pages, no figure

    Second order QCD corrections to inclusive semileptonic b \to Xc l \bar \nu_l decays with massless and massive lepton

    Full text link
    We extend previous computations of the second order QCD corrections to semileptonic b \to c inclusive transitions, to the case where the charged lepton in the final state is massive. This allows accurate description of b \to c \tau \bar \nu_\tau decays. We review techniques used in the computation of O(\alpha_s^2) corrections to inclusive semileptonic b \to c transitions and present extensive numerical studies of O(\alpha_s^2) QCD corrections to b \to c l \bar \nu_l decays, for l =e, \tau.Comment: 30 pages, 4 figures, 5 table

    Supersymmetric Higgs Yukawa Couplings to Bottom Quarks at next-to-next-to-leading Order

    Full text link
    The effective bottom Yukawa couplings are analyzed for the minimal supersymmetric extension of the Standard Model at two-loop accuracy within SUSY-QCD. They include the resummation of the dominant corrections for large values of tg(beta). In particular the two-loop SUSY-QCD corrections to the leading SUSY-QCD and top-induced SUSY-electroweak contributions are addressed. The residual theoretical uncertainties range at the per-cent level.Comment: 25 pages, 9 figures, added comments and references, typos corrected, results unchanged, published versio

    Production of scalar and pseudo-scalar Higgs bosons to next-to-next-to-leading order at hadron colliders

    Full text link
    We consider the production of intermediate-mass CP-even and CP-odd Higgs bosons in proton-proton and proton-anti-proton collisions. We extend the recently published results for the complete next-to-next-to-leading order calculation for a scalar Higgs boson to the pseudo-scalar case and present details of the calculation that might be useful for similar future investigations. The result is based on an expansion in the limit of a heavy top quark mass and a subsequent matching to the expression obtained in the limit of infinite energy. For a Higgs boson mass of 120 GeV the deviation from the infinite-top quark mass result is small. For 300 GeV, however, the next-to-next-to-leading order corrections for a scalar Higgs boson exceed the effective-theory result by about 9% which increases to 22% in the pseudo-scalar case. Thus in this mass range the effect on the total cross section amounts to about 2% and 6%, respectively, which may be relevant in future precision studies.Comment: 29 page

    The Quark Beam Function at NNLL

    Get PDF
    In hard collisions at a hadron collider the most appropriate description of the initial state depends on what is measured in the final state. Parton distribution functions (PDFs) evolved to the hard collision scale Q are appropriate for inclusive observables, but not for measurements with a specific number of hard jets, leptons, and photons. Here the incoming protons are probed and lose their identity to an incoming jet at a scale \mu_B << Q, and the initial state is described by universal beam functions. We discuss the field-theoretic treatment of beam functions, and show that the beam function has the same RG evolution as the jet function to all orders in perturbation theory. In contrast to PDF evolution, the beam function evolution does not mix quarks and gluons and changes the virtuality of the colliding parton at fixed momentum fraction. At \mu_B, the incoming jet can be described perturbatively, and we give a detailed derivation of the one-loop matching of the quark beam function onto quark and gluon PDFs. We compute the associated NLO Wilson coefficients and explicitly verify the cancellation of IR singularities. As an application, we give an expression for the next-to-next-to-leading logarithmic order (NNLL) resummed Drell-Yan beam thrust cross section.Comment: 54 pages, 9 figures; v2: notation simplified in a few places, typos fixed; v3: journal versio

    Parton Fragmentation within an Identified Jet at NNLL

    Full text link
    The fragmentation of a light parton i to a jet containing a light energetic hadron h, where the momentum fraction of this hadron as well as the invariant mass of the jet is measured, is described by "fragmenting jet functions". We calculate the one-loop matching coefficients J_{ij} that relate the fragmenting jet functions G_i^h to the standard, unpolarized fragmentation functions D_j^h for quark and gluon jets. We perform this calculation using various IR regulators and show explicitly how the IR divergences cancel in the matching. We derive the relationship between the coefficients J_{ij} and the quark and gluon jet functions. This provides a cross-check of our results. As an application we study the process e+ e- to X pi+ on the Upsilon(4S) resonance where we measure the momentum fraction of the pi+ and restrict to the dijet limit by imposing a cut on thrust T. In our analysis we sum the logarithms of tau=1-T in the cross section to next-to-next-to-leading-logarithmic accuracy (NNLL). We find that including contributions up to NNLL (or NLO) can have a large impact on extracting fragmentation functions from e+ e- to dijet + h.Comment: expanded introduction, typos fixed, journal versio

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure
    corecore