230 research outputs found

    AnchorNet: a weakly supervised network to learn geometry-sensitive features for semantic matching

    Get PDF
    Despite significant progress of deep learning in recent years, state-of-the-art semantic matching methods still rely on legacy features such as SIFT or HoG. We argue that the strong invariance properties that are key to the success of recent deep architectures on the classification task make them unfit for dense correspondence tasks, unless a large amount of supervision is used. In this work, we propose a deep network, termed AnchorNet, that produces image representations that are well-suited for semantic matching. It relies on a set of filters whose response is geometrically consistent across different object instances, even in the presence of strong intra-class, scale, or viewpoint variations. Trained only with weak image-level labels, the final representation successfully captures information about the object structure and improves results of state-of-the-art semantic matching methods such as the Deformable Spatial Pyramid or the Proposal Flow methods. We show positive results on the cross-instance matching task where different instances of the same object category are matched as well as on a new cross-category semantic matching task aligning pairs of instances each from a different object class

    Layered motion fusion: lifting motion segmentation to 3D in egocentric videos

    Get PDF
    Computer vision is largely based on 2D techniques, with 3D vision still relegated to a relatively narrow subset of applications. However, by building on recent advances in 3D models such as neural radiance fields, some authors have shown that 3D techniques can at last improve outputs extracted from independent 2D views, by fusing them into 3D and denoising them. This is particularly helpful in egocentric videos, where the camera motion is significant, but only under the assumption that the scene itself is static. In fact, as shown in the recent analysis conducted by EPIC Fields, 3D techniques are ineffective when it comes to studying dynamic phenomena, and, in particular, when segmenting moving objects. In this paper, we look into this issue in more detail. First, we propose to improve dynamic segmentation in 3D by fusing motion segmentation predictions from a 2D-based model into layered radiance fields (Layered Motion Fusion). However, the high complexity of long, dynamic videos makes it challenging to capture the underlying geometric structure, and, as a result, hinders the fusion of motion cues into the (incomplete) scene geometry. We address this issue through test-time refinement, which helps the model to focus on specific frames, thereby reducing the data complexity. This results in a synergy between motion fusion and the refinement, and in turn leads to segmentation predictions of the 3D model that surpass the 2D baseline by a large margin. This demonstrates that 3D techniques can enhance 2D analysis even for dynamic phenomena in a challenging and realistic setting
    corecore