300 research outputs found

    Inhibition causes ceaseless dynamics in networks of excitable nodes

    Full text link
    The collective dynamics of a network of excitable nodes changes dramatically when inhibitory nodes are introduced. We consider inhibitory nodes which may be activated just like excitatory nodes but, upon activating, decrease the probability of activation of network neighbors. We show that, although the direct effect of inhibitory nodes is to decrease activity, the collective dynamics becomes self-sustaining. We explain this counterintuitive result by defining and analyzing a "branching function" which may be thought of as an activity-dependent branching ratio. The shape of the branching function implies that for a range of global coupling parameters dynamics are self-sustaining. Within the self-sustaining region of parameter space lies a critical line along which dynamics take the form of avalanches with universal scaling of size and duration, embedded in ceaseless timeseries of activity. Our analyses, confirmed by numerical simulation, suggest that inhibition may play a counterintuitive role in excitable networks.Comment: 11 pages, 6 figure

    Robust entropy requires strong and balanced excitatory and inhibitory synapses

    Full text link
    It is widely appreciated that well-balanced excitation and inhibition are necessary for proper function in neural networks. However, in principle, such balance could be achieved by many possible configurations of excitatory and inhibitory strengths, and relative numbers of excitatory and inhibitory neurons. For instance, a given level of excitation could be balanced by either numerous inhibitory neurons with weak synapses, or few inhibitory neurons with strong synapses. Among the continuum of different but balanced configurations, why should any particular configuration be favored? Here we address this question in the context of the entropy of network dynamics by studying an analytically tractable network of binary neurons. We find that entropy is highest at the boundary between excitation-dominant and inhibition-dominant regimes. Entropy also varies along this boundary with a trade-off between high and robust entropy: weak synapse strengths yield high network entropy which is fragile to parameter variations, while strong synapse strengths yield a lower, but more robust, network entropy. In the case where inhibitory and excitatory synapses are constrained to have similar strength, we find that a small, but non-zero fraction of inhibitory neurons, like that seen in mammalian cortex, results in robust and relatively high entropy

    Effects of network topology, transmission delays, and refractoriness on the response of coupled excitable systems to a stochastic stimulus

    Full text link
    We study the effects of network topology on the response of networks of coupled discrete excitable systems to an external stochastic stimulus. We extend recent results that characterize the response in terms of spectral properties of the adjacency matrix by allowing distributions in the transmission delays and in the number of refractory states, and by developing a nonperturbative approximation to the steady state network response. We confirm our theoretical results with numerical simulations. We find that the steady state response amplitude is inversely proportional to the duration of refractoriness, which reduces the maximum attainable dynamic range. We also find that transmission delays alter the time required to reach steady state. Importantly, neither delays nor refractoriness impact the general prediction that criticality and maximum dynamic range occur when the largest eigenvalue of the adjacency matrix is unity

    A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    Get PDF
    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences

    Predicting criticality and dynamic range in complex networks: effects of topology

    Full text link
    The collective dynamics of a network of coupled excitable systems in response to an external stimulus depends on the topology of the connections in the network. Here we develop a general theoretical approach to study the effects of network topology on dynamic range, which quantifies the range of stimulus intensities resulting in distinguishable network responses. We find that the largest eigenvalue of the weighted network adjacency matrix governs the network dynamic range. Specifically, a largest eigenvalue equal to one corresponds to a critical regime with maximum dynamic range. We gain deeper insight on the effects of network topology using a nonlinear analysis in terms of additional spectral properties of the adjacency matrix. We find that homogeneous networks can reach a higher dynamic range than those with heterogeneous topology. Our analysis, confirmed by numerical simulations, generalizes previous studies in terms of the largest eigenvalue of the adjacency matrix.Comment: 4 pages, 3 figure

    Statistical Properties of Avalanches in Networks

    Full text link
    We characterize the distributions of size and duration of avalanches propagating in complex networks. By an avalanche we mean the sequence of events initiated by the externally stimulated `excitation' of a network node, which may, with some probability, then stimulate subsequent firings of the nodes to which it is connected, resulting in a cascade of firings. This type of process is relevant to a wide variety of situations, including neuroscience, cascading failures on electrical power grids, and epidemology. We find that the statistics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an appropriate adjacency matrix which encodes the structure of the network. By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of network structure on the distribution of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in the network. These findings might find application in the analysis of branching processes in networks, such as cascading power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches), are robust to complex underlying network topologies.Comment: 11 pages, 7 figure

    Transient fluctuation of the prosperity of firms in a network economy

    Full text link
    The transient fluctuation of the prosperity of firms in a network economy is investigated with an abstract stochastic model. The model describes the profit which firms make when they sell materials to a firm which produces a product and the fixed cost expense to the firms to produce those materials and product. The formulae for this model are parallel to those for population dynamics. The swinging changes in the fluctuation in the transient state from the initial growth to the final steady state are the consequence of a topology-dependent time trial competition between the profitable interactions and expense. The firm in a sparse random network economy is more likely to go bankrupt than expected from the value of the limit of the fluctuation in the steady state, and there is a risk of failing to reach by far the less fluctuating steady state
    corecore