600 research outputs found
The significance of work allocation in the professional apprenticeship of solicitors
It is a peculiarity of the solicitors’ profession that it has historically relied on methods of pre-qualification ‘training’ by way of apprenticeship and that an entirely respectable non-graduate route into the profession remains. In a political context, however, where the profession is called upon positively to demonstrate its standards of performance, the professional regulator seeks to attach a competence framework to the existing model; shifting the focus from how the trainee learns to what the trainee learns. This paper will explore the period of traineeship from the perspective of the trainees themselves, drawing on two small qualitative studies, focussing on the fundamental context factor of the allocation and structuring of their work. In the first study the context for this evaluation is the set of outcomes being tested by the professional regulator and in the second, the perceptions of qualified individuals looking back at their apprenticeship, The paper concludes that there remains work for the profession to do not only in fostering supportive and expansive apprenticeships, but in attending, however, supportive the surrounding environment, to the work being carried out by trainees and its relationship with the work carried out by newly qualified solicitors
Forward Modeling of Space-borne Gravitational Wave Detectors
Planning is underway for several space-borne gravitational wave observatories
to be built in the next ten to twenty years. Realistic and efficient forward
modeling will play a key role in the design and operation of these
observatories. Space-borne interferometric gravitational wave detectors operate
very differently from their ground based counterparts. Complex orbital motion,
virtual interferometry, and finite size effects complicate the description of
space-based systems, while nonlinear control systems complicate the description
of ground based systems. Here we explore the forward modeling of space-based
gravitational wave detectors and introduce an adiabatic approximation to the
detector response that significantly extends the range of the standard low
frequency approximation. The adiabatic approximation will aid in the
development of data analysis techniques, and improve the modeling of
astrophysical parameter extraction.Comment: 14 Pages, 14 Figures, RevTex
Stellar populations of classical and pseudo-bulges for a sample of isolated spiral galaxies
In this paper we present the stellar population synthesis results for a
sample of 75 bulges in isolated spiral Sb-Sc galaxies, using the spectroscopic
data from the Sloan Digital Sky Survey and the STARLIGHT code. We find that
both pseudo-bulges and classical bulges in our sample are predominantly
composed of old stellar populations, with mean mass-weighted stellar age around
10 Gyr. While the stellar population of pseudo-bulges is, in general, younger
than that of classical bulges, the difference is not significant, which
indicates that it is hard to distinguish pseudo-bulges from classical bulges,
at least for these isolated galaxies, only based on their stellar populations.
Pseudo-bulges have star formation activities with relatively longer timescale
than classical bulges, indicating that secular evolution is more important in
this kind of systems. Our results also show that pseudo-bulges have a lower
stellar velocity dispersion than their classical counterparts, which suggests
that classical bulges are more dispersion-supported than pseudo-bulges.Comment: 10 pages, 8 figures. Accepted for publication in Astrophysics & Space
Scienc
The starburst phenomenon from the optical/near-IR perspective
The optical/near-IR stellar continuum carries unique information about the
stellar population in a galaxy, its mass function and star-formation history.
Star-forming regions display rich emission-line spectra from which we can
derive the dust and gas distribution, map velocity fields, metallicities and
young massive stars and locate shocks and stellar winds. All this information
is very useful in the dissection of the starburst phenomenon. We discuss a few
of the advantages and limitations of observations in the optical/near-IR region
and focus on some results. Special attention is given to the role of
interactions and mergers and observations of the relatively dust-free starburst
dwarfs. In the future we expect new and refined diagnostic tools to provide us
with more detailed information about the IMF, strength and duration of the
burst and its triggering mechanisms.Comment: 6 pages, 3 figures, to appear in "Starbursts: from 30 Doradus to
Lyman Break Galaxies" 2005, eds. R. de Grijs and R. M. Gonzalez Delgado
(Kluwer
Universality in D-brane Inflation
We study the six-field dynamics of D3-brane inflation for a general scalar
potential on the conifold, finding simple, universal behavior. We numerically
evolve the equations of motion for an ensemble of more than 7 \times 10^7
realizations, drawing the coefficients in the scalar potential from statistical
distributions whose detailed properties have demonstrably small effects on our
results. When prolonged inflation occurs, it has a characteristic form: the
D3-brane initially moves rapidly in the angular directions, spirals down to an
inflection point in the potential, and settles into single-field inflation. The
probability of N_{e} e-folds of inflation is a power law, P(N_{e}) \propto
N_{e}^{-3}, and we derive the same exponent from a simple analytical model. The
success of inflation is relatively insensitive to the initial conditions: we
find attractor behavior in the angular directions, and the D3-brane can begin
far above the inflection point without overshooting. In favorable regions of
the parameter space, models yielding 60 e-folds of expansion arise
approximately once in 10^3 trials. Realizations that are effectively
single-field and give rise to a primordial spectrum of fluctuations consistent
with WMAP, for which at least 120 e-folds are required, arise approximately
once in 10^5 trials. The emergence of robust predictions from a six-field
potential with hundreds of terms invites an analytic approach to multifield
inflation.Comment: 28 pages, 9 figure
Formation of Small-Scale Condensations in the Molecular Clouds via Thermal Instability
A systematic study of the linear thermal instability of a self-gravitating
magnetic molecular cloud is carried out for the case when the unperturbed
background is subject to local expansion or contraction. We consider the
ambipolar diffusion, or ion-neutral friction on the perturbed states. In this
way, we obtain a non-dimensional characteristic equation that reduces to the
prior characteristic equation in the non-gravitating stationary background. By
parametric manipulation of this characteristic equation, we conclude that there
are, not only oblate condensation forming solutions, but also prolate solutions
according to local expansion or contraction of the background. We obtain the
conditions for existence of the Field lengths that thermal instability in the
molecular clouds can occur. If these conditions establish, small-scale
condensations in the form of spherical, oblate, or prolate may be produced via
thermal instability.Comment: 16 page, accepted by Ap&S
Monitoring Soil Quality to Assess the Sustainability of Harvesting Corn Stover
Harvesting feedstock for biofuel production must not degrade soil, water, or air resources. Our objective is to provide an overview of field research being conducted to quantify effects of harvesting corn (Zea mays L.) stover as a bioenergy feedstock. Coordinated field studies are being conducted near Ames, IA; St. Paul and Morris, MN; Mead, NE; University Park, PA; Florence, SC; and Brookings, SD., as part of the USDA-ARS Renewable Energy Assessment Project (REAP). A baseline soil quality assessment was made using the Soil Management Assessment Framework (SMAF). Corn grain and residue yield for two different stover harvest rates (∼50% and ∼90%) are being measured. Available soil data remains quite limited but sufficient for an initial SMAF analysis that confirms total organic carbon (TOC) is a soil quality indicator that needs to be closely monitored closely to quantify crop residue removal effects. Overall, grain yields averaged 9.7 and 11.7 Mg ha−1 (155 and 186 bu acre−1) in 2008 and 2009, values that are consistent with national averages for both years. The average amount of stover collected for the 50% treatment was 2.6 and 4.2 Mg ha−1 for 2008 and 2009, while the 90% treatment resulted in an average removal of 5.4 and 7.4 Mg ha−1, respectively. Based on a recent literature review, both stover harvest scenarios could result in a gradual decline in TOC. However, the literature value has a large standard error, so continuation of this long-term multi-location study for several years is warranted
A supernova constraint on bulk majorons
In models with large extra dimensions all gauge singlet fields can in
principle propagate in the extra dimensional space. We have investigated
possible constraints on majoron models of neutrino masses in which the majorons
propagate in extra dimensions. It is found that astrophysical constraints from
supernovae are many orders of magnitude stronger than previous accelerator
bounds. Our findings suggest that unnatural types of the "see-saw" mechanism
for neutrino masses are unlikely to occur in nature, even in the presence of
extra dimensions.Comment: Minor changes, matches the version to appear in PR
A circular polarimeter for the Cosmic Microwave Background
A primordial degree of circular polarization of the Cosmic Microwave
Background is not observationally excluded. The hypothesis of primordial
dichroism can be quantitatively falsified if the plasma is magnetized prior to
photon decoupling since the initial V-mode polarization affects the evolution
of the temperature fluctuations as well as the equations for the linear
polarization. The observed values of the temperature and polarization angular
power spectra are used to infer constraints on the amplitude and on the
spectral slope of the primordial V-mode. Prior to photon decoupling magnetic
fields play the role of polarimeters insofar as they unveil the circular
dichroism by coupling the V-mode power spectrum to the remaining brightness
perturbations. Conversely, for angular scales ranging between 4 deg and 10 deg
the joined bounds on the magnitude of circular polarization and on the magnetic
field intensity suggest that direct limits on the V-mode power spectrum in the
range of 0.01 mK could directly rule out pre-decoupling magnetic fields in the
range of 10-100 nG. The frequency dependence of the signal is located, for the
present purposes, in the GHz range.Comment: 28 pages, 12 included figures
Dynamic Evolution Model of Isothermal Voids and Shocks
We explore self-similar hydrodynamic evolution of central voids embedded in
an isothermal gas of spherical symmetry under the self-gravity. More
specifically, we study voids expanding at constant radial speeds in an
isothermal gas and construct all types of possible void solutions without or
with shocks in surrounding envelopes. We examine properties of void boundaries
and outer envelopes. Voids without shocks are all bounded by overdense shells
and either inflows or outflows in the outer envelope may occur. These
solutions, referred to as type void solutions, are further
divided into subtypes and
according to their characteristic behaviours across the sonic critical line
(SCL). Void solutions with shocks in envelopes are referred to as type
voids and can have both dense and quasi-smooth edges.
Asymptotically, outflows, breezes, inflows, accretions and static outer
envelopes may all surround such type voids. Both cases of
constant and varying temperatures across isothermal shock fronts are analyzed;
they are referred to as types and
void shock solutions. We apply the `phase net matching procedure' to construct
various self-similar void solutions. We also present analysis on void
generation mechanisms and describe several astrophysical applications. By
including self-gravity, gas pressure and shocks, our isothermal self-similar
void (ISSV) model is adaptable to various astrophysical systems such as
planetary nebulae, hot bubbles and superbubbles in the interstellar medium as
well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS
- …
