30,037 research outputs found
Civil Procedure as a Critical Discussion
This Article develops a model for analyzing legal dispute resolution systems as systems for argumentation. Our model meshes two theories of argument conceived centuries apart: contemporary argumentation theory and classical stasis theory. In this Article, we apply the model to the Federal Rules of Civil Procedure as a proof of concept. Specifically, the model analyzes how the Federal Rules of Civil Procedure function as a staged argumentative critical discussion designed to permit judge and jury to rationally resolve litigants’ differences in a reasonable manner. At a high level, this critical discussion has three phases: a confrontation, an (extended) opening, and a concluding phase. Those phases are the umbrella under which discrete argumentation phases occur at points we call stases. Whenever litigants seek a ruling or judgment, they reach a stasis—a stopping or standing point for arguing procedural points of disagreement. During these stases, the parties make arguments that fall into predictable “commonplace” argument types. Taken together, these stock argument types form a taxonomy of arguments for all civil cases. Our claim that the Federal Rules of Civil Procedure function as a system for argumentation is novel, as is our claim that civil cases breed a taxonomy of argument types. These claims also mark the beginning of a broader project. Starting here with the Federal Rules of Civil Procedure, we embark on a journey that we expect to follow for several years (and which we hope other scholars will join), exploring our model’s application across dispute resolution systems and using it to make normative claims about those systems. From a birds-eye view, this Article also represents a short modern trek in a much longer journey begun by advocates in city states in and near Greece nearly 2500 years ago
Scaling relations of supersonic turbulence in star-forming molecular clouds
We present a direct numerical and analytical study of driven supersonic MHD
turbulence that is believed to govern the dynamics of star-forming molecular
clouds. We describe statistical properties of the turbulence by measuring the
velocity difference structure functions up to the fifth order. In particular,
the velocity power spectrum in the inertial range is found to be close to E(k)
\~ k^{-1.74}, and the velocity difference scales as ~ L^{0.42}. The
results agree well with the Kolmogorov--Burgers analytical model suggested for
supersonic turbulence in [astro-ph/0108300]. We then generalize the model to
more realistic, fractal structure of molecular clouds, and show that depending
on the fractal dimension of a given molecular cloud, the theoretical value for
the velocity spectrum spans the interval [-1.74 ... -1.89], while the
corresponding window for the velocity difference scaling exponent is [0.42 ...
0.78].Comment: 17 pages, 6 figures include
A voice-actuated wind tunnel model leak checking system
A voice-actuated wind tunnel model leak checking system was developed. The system uses a voice recognition and response unit to interact with the technician along with a graphics terminal to provide the technician with visual feedback while checking a model for leaks
Developmental testing of a programmable multizone furnace
A multizone furnace was evaluated for its potential utilization for process experimentation on board the Space Shuttle. A temperature gradient can be created through the use of a series of connected temperature zones and can be translated by the coordinated sequencing of zone temperatures. The Bridgman-Stockbarger thermal configuration for directional solidification was implemented so that neither the sample nor furnace was translated. The thermal behavior of the furnace was measured and characterized. Limitations due to both thermal and electronic (computer) factors are identified. The results indicate that the multizone design is limited to low temperature gradients because of the indirect furnace-to-sample thermal coupling needed to blend the discrete thermal zones. The multizone furnace design inherently consumes more power than a similar (two temperature) conventional Bridgman type directional solidification furnace because every zone must be capable of the high cooling rates needed to produce the maximum desired temperature drop. Typical achievable static temperature gradients for the furnace tested were between 6 and 75 C/in. The maximum gradient velocity was approximately 10 in./hr. Several aspects of the tested system could be improved, but the dependence of the multizone design on high heat loss will limit Space Shuttle applications in the form tested unless additional power is available. The multizone furnace offers great flexibility but requires a high level of operator understanding for full advantage to be obtained
SSF loads and controllability during assembly
The Orbiter Primary Reaction Control System (PRCS) pulse width and firing frequency is restricted to prevent excessive loads in the Space Station Freedom (SSF). The feasibility of using the SSF Control Moment Gyros (CMG) as a secondary controller for load relief is evaluated. The studies revealed the CMG not only reduced loads but were useful for other SSF functions: vibration suppression and modal excitation. Vibration suppression lowers the g level for the SSF micro-g experiments and damps the low frequency oscillations that cause crew sickness. Modal excitation could be used for the modal identification experiment and health monitoring. The CMG's reduced the peak loads and damped the vibrations. They were found to be an effective multi-purpose ancillary device for SSF operation
Computations involving differential operators and their actions on functions
The algorithms derived by Grossmann and Larson (1989) are further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear dynamical systems. These algorithms are extended in two different directions: the algorithms are generalized so that they apply to differential operators on groups and the data structures and algorithms are developed to compute symbolically the action of differential operators on functions. Both of these generalizations are needed for applications
Study of hot wire techniques in low density flows with high turbulence levels
Prediction of heat, mass, species, and momentum fluxes in a space vehicle and aerodynamic noise production by supersonic jet and rocket exhausts requires a predictability of the associated turbulence fields. The hot wire is a technique that will allow an experimental determination of turbulent properties
- …
