1,456 research outputs found
Fundamental Strings, Holography, and Nonlinear Superconformal Algebras
We discuss aspects of holography in the AdS_3 \times S^p near string geometry
of a collection of straight fundamental heterotic strings. We use anomalies and
symmetries to determine general features of the dual CFT. The symmetries
suggest the appearance of nonlinear superconformal algebras, and we show how
these arise in the framework of holographic renormalization methods. The
nonlinear algebras imply intricate formulas for the central charge, and we show
that in the bulk these correspond to an infinite series of quantum gravity
corrections. We also makes some comments on the worldsheet sigma-model for
strings on AdS_3\times S^2, which is the holographic dual geometry of parallel
heterotic strings in five dimensions.Comment: 25 page
Ecological homogenization of urban USA
A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multidisciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; Minneapolis-St Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales. © The Ecological Society of America
Convergent Surface Water Distributions in U.S. Cities
Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and distribution: in other words, cities will gain or lose water such that they become more similar to each other than are their surrounding natural landscapes. Using a database of more than 1 million water bodies and 1 million km of streams, we compared the surface water of 100 US cities with their surrounding undeveloped land. We evaluated differences in areal (A WB) and numeric densities (N WB) of water bodies (lakes, wetlands, and so on), the morphological characteristics of water bodies (size), and the density (D C) of surface flow channels (that is, streams and rivers). The variance of urban A WB, N WB, and D C across the 100 MSAs decreased, by 89, 25, and 71%, respectively, compared to undeveloped land. These data show that many cities are surface water poor relative to undeveloped land; however, in drier landscapes urbanization increases the occurrence of surface water. This convergence pattern strengthened with development intensity, such that high intensity urban development had an areal water body density 98% less than undeveloped lands. Urbanization appears to drive the convergence of hydrological features across the US, such that surface water distributions of cities are more similar to each other than to their surrounding landscapes. © 2014 The Author(s)
The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.
The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere
The central slope of dark matter cores in dwarf galaxies: Simulations vs. THINGS
We make a direct comparison of the derived dark matter (DM) distributions
between hydrodynamical simulations of dwarf galaxies assuming a LCDM cosmology
and the observed dwarf galaxies sample from the THINGS survey in terms of (1)
the rotation curve shape and (2) the logarithmic inner density slope alpha of
mass density profiles. The simulations, which include the effect of baryonic
feedback processes, such as gas cooling, star formation, cosmic UV background
heating and most importantly physically motivated gas outflows driven by
supernovae (SNe), form bulgeless galaxies with DM cores. We show that the
stellar and baryonic mass is similar to that inferred from photometric and
kinematic methods for galaxies of similar circular velocity. Analyzing the
simulations in exactly the same way as the observational sample allows us to
address directly the so-called "cusp/core" problem in the LCDM model. We show
that the rotation curves of the simulated dwarf galaxies rise less steeply than
CDM rotation curves and are consistent with those of the THINGS dwarf galaxies.
The mean value of the logarithmic inner density slopes alpha of the simulated
galaxies' dark matter density profiles is ~ -0.4 +- 0.1, which shows good
agreement with \alpha = -0.29 +- 0.07 of the THINGS dwarf galaxies. The effect
of non-circular motions is not significant enough to affect the results. This
confirms that the baryonic feedback processes included in the simulations are
efficiently able to make the initial cusps with \alpha ~ -1.0 to -1.5 predicted
by dark-matter-only simulations shallower, and induce DM halos with a central
mass distribution similar to that observed in nearby dwarf galaxies.Comment: 13 pages, 7 figures; Accepted for publication in AJ; minor
correction
Assessing the homogenization of urban land management with an application to US residential lawn care.
Changes in land use, land cover, and land management present some of the greatest potential global environmental challenges of the 21st century. Urbanization, one of the principal drivers of these transformations, is commonly thought to be generating land changes that are increasingly similar. An implication of this multiscale homogenization hypothesis is that the ecosystem structure and function and human behaviors associated with urbanization should be more similar in certain kinds of urbanized locations across biogeophysical gradients than across urbanization gradients in places with similar biogeophysical characteristics. This paper introduces an analytical framework for testing this hypothesis, and applies the framework to the case of residential lawn care. This set of land management behaviors are often assumed--not demonstrated--to exhibit homogeneity. Multivariate analyses are conducted on telephone survey responses from a geographically stratified random sample of homeowners (n = 9,480), equally distributed across six US metropolitan areas. Two behaviors are examined: lawn fertilizing and irrigating. Limited support for strong homogenization is found at two scales (i.e., multi- and single-city; 2 of 36 cases), but significant support is found for homogenization at only one scale (22 cases) or at neither scale (12 cases). These results suggest that US lawn care behaviors are more differentiated in practice than in theory. Thus, even if the biophysical outcomes of urbanization are homogenizing, managing the associated sustainability implications may require a multiscale, differentiated approach because the underlying social practices appear relatively varied. The analytical approach introduced here should also be productive for other facets of urban-ecological homogenization
Rethinking feasibility analysis for urban development: a multidimensional decision support tool
Large-scale urban development projects featured over the past thirty years have shown some critical issues related to the implementation phase. Con-sequently, the current practice seems oriented toward minimal and wide-spread interventions meant as urban catalyst. This planning practice might solve the problem of limited reliability of large developments’ feasibility studies, but it rises an evaluation demand related to the selection of coali-tion of projects within a multidimensional and multi-stakeholders deci-sion-making context. This study aims to propose a framework for the generation of coalitions of elementary actions in the context of urban regeneration processes and for their evaluation using a Multi Criteria Decision Analysis approach. The proposed evaluation framework supports decision makers in exploring dif-ferent combinations of actions in the context of urban interventions taking into account synergies, i.e. positive or negative effects on the overall per-formance of an alternative linked to the joint realization of specific pairs of actions. The proposed evaluation framework has been tested on a pilot case study dealing with urban regeneration processes in the city of Milan (Italy)
Carbon-13 Dynamic MRS and MRSI of Normal and Fasted Rat Liver with Hyperpolarized C-Pyruvate
BACKGROUND: The use of in vivo (13)C nuclear magnetic resonance spectroscopy in probing metabolic pathways to study normal metabolism and characterize disease physiology has been limited by its low sensitivity. However, recent technological advances have enabled greater than 50,000-fold enhancement of liquid-state polarization of metabolically active (13)C substrates, allowing for rapid assessment of (13)C metabolism in vivo. The present study applied hyperpolarized (13)C magnetic resonance spectroscopy to the investigation of liver metabolism, demonstrating for the first time the feasibility of applying this technology to detect differences in liver metabolic states. PROCEDURES: [1-(13)C]pyruvate was hyperpolarized with a dynamic nuclear polarization instrument and injected into normal and fasted rats. The uptake of pyruvate and its conversion to the metabolic products lactate and alanine were observed with slice-localized dynamic magnetic resonance spectroscopy and 3D magnetic resonance spectroscopic imaging (3D-MRSI). RESULTS: Significant differences in lactate to alanine ratio (P < 0.01) between normal and fasted rat liver slice dynamic spectra were observed. 3D-MRSI localized to the fasted livers demonstrated significantly decreased (13)C-alanine levels (P < 0.01) compared to normal. CONCLUSIONS: This study presents the initial demonstration of characterizing metabolic state differences in the liver with hyperpolarized (13)C spectroscopy and shows the ability to detect physiological perturbations in alanine aminotransferase activity, which is an encouraging result for future liver disease investigations with hyperpolarized magnetic resonance technology
Recommended from our members
SEIS: Insight's Seismic Experiment for Internal Structure of Mars.
By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars' surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking's Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars' surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of M w ∼ 3 at 40 ∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.Electronic supplementary materialThe online version of this article (10.1007/s11214-018-0574-6) contains supplementary material, which is available to authorized users
- …
