1,844 research outputs found
A bistable soft gripper with mechanically embedded sensing and actuation for fast closed-loop grasping
Soft robotic grippers are shown to be high effective for grasping
unstructured objects with simple sensing and control strategies. However, they
are still limited by their speed, sensing capabilities and actuation mechanism.
Hence, their usage have been restricted in highly dynamic grasping tasks. This
paper presents a soft robotic gripper with tunable bistable properties for
sensor-less dynamic grasping. The bistable mechanism allows us to store
arbitrarily large strain energy in the soft system which is then released upon
contact. The mechanism also provides flexibility on the type of actuation
mechanism as the grasping and sensing phase is completely passive. Theoretical
background behind the mechanism is presented with finite element analysis to
provide insights into design parameters. Finally, we experimentally demonstrate
sensor-less dynamic grasping of an unknown object within 0.02 seconds,
including the time to sense and actuate
Cephalopod-inspired soft robots: design criteria and modelling frameworks
Cephalopods (i.e. octopuses and squids) are taken as a source of inspiration for the development of a new kind of underwater soft robot. These cephalopod-inspired, soft-bodied vehicles entail a hollow, elastic shell capable of performing a routine of recursive ingestion and expulsion of discrete slugs of fluids via the actual inflation and deflation of the elastic chamber. This routine allows the vehicle to propel itself in water in a very similar fashion to that of cephalopods. This mode of pulsed jetting enabled by the actual body shape variations can ideally benefit from the positive feedback provided by impulse-rich discontinuous jet formation and added mass recovery. This work is complemented by extensive modelling efforts which are meant to aid in the process of mechanical design optimization as well as providing an advanced tool for biomechanical studies of living cephalopods
Forward speed control of a pulsed-jet soft-bodied underwater vehicle
This paper reports on the development of the control for a new class of soft underwater vehicles. These vehicles exploit their soft-bodied nature to produce thrust by cyclically ingesting and expelling ambient fluid. A forward speed control based on the linearised dynamics of the robot is design. The control succeeds at dealing with the discontinuous thrust by accounting for the shape-change driven actuation
A soft unmanned underwater vehicle with augmented thrust capability
The components which could make Soft Unmanned Underwater Vehicles a winning technology for a range of marine operations are addressed: these include vortex-enhanced thrust, added mass recovery and high degree of compliance of the vehicle. Based on these design criteria and recent advancement in soft-bodied, pulsed-jet thrusters, a new underwater vehicle is developed and tested
PoseiDRONE: design of a soft-bodied ROV with crawling, swimming and manipulation ability
The design concept and development of a multi-purpose, underwater robot is presented. The final robot consists of a continuum composed for 80% of its volume of rubber-like materials and it combines locomotion (i.e. crawling and swimming) and manipulation capabilities. A first prototype of the robot is illustrated based on the integration of existing prototypes
A general method for the design and fabrication of shape memory alloy active spring actuators
Shape memory alloys have been widely proposed as actuators, in fields such as robotics, biomimetics and microsystems: in particular spring actuators are the most widely used, due to their simplicity of fabrication. The aim of this paper is to provide a general model and the techniques for fabricating SMA spring actuators. All the steps of the design process are described: a mechanical model to optimize the mechanical characteristic for a given requirement of force and available space, and a thermal model for the estimation of the electrical power needed for activation. The parameters of both models are obtained by experimental measurements, which are described in the paper. The models are then validated on springs manufactured manually, showing also the fabrication process. The design method is valid for the dimensioning of SMA springs, independently from the external ambient conditions. The influence on the actuator bandwidth was investigated for different working environments, providing numerical indications for the utilization in underwater applications. The spring characteristics can be calculated by the mechanical model with an accuracy of 5%. The thermal model allows one to calculate the current needed for activation under different ambient conditions, in order to guarantee activation in the specific loading conditions. Moreover, two solutions were found to reduce the power consumption by more than 40% without a dramatic reduction of bandwidth
The Morphological Computation Principles as a New Paradigm for Robotic Design
A theory, by definition, is a generalization of some phenomenon observations, and a principle is a law or a rule that should be followed as a guideline. Their formalization is a creative process, which faces specific and attested steps. The following sections reproduce this logical flow by expressing the principle of Morphological Computation as a timeline: firstly the observations of this phenomenon in Nature has been reported in relation with some recent theories, afterward it has been linked with the current applications in artificial systems and finally the further applications, challenges and objectives will project this principle into future scenarios
Material properties affect evolution's ability to exploit morphological computation in growing soft-bodied creatures
The concept of morphological computation holds that the
body of an agent can, under certain circumstances, exploit
the interaction with the environment to achieve useful behavior,
potentially reducing the computational burden of
the brain/controller. The conditions under which such phenomenon
arises are, however, unclear. We hypothesize that
morphological computation will be facilitated by body plans
with appropriate geometric, material, and growth properties,
while it will be hindered by other body plans in which one or
more of these three properties is not well suited to the task.
We test this by evolving the geometries and growth processes
of soft robots, with either manually-set softer or stiffer material
properties. Results support our hypothesis: we find that
for the task investigated, evolved softer robots achieve better
performances with simpler growth processes than evolved
stiffer ones. We hold that the softer robots succeed because
they are better able to exploit morphological computation.
This four-way interaction among geometry, growth, material
properties and morphological computation is but one example
phenomenon that can be investigated using the system here
introduced, that could enable future studies on the evolution
and development of generic soft-bodied creatures
PoseiDRONE: design of a soft-bodied ROV with crawling, swimming and manipulation ability
The design concept and development of a multi-purpose, underwater robot is presented. The final robot consists of a continuum composed for 80% of its volume of rubber-like materials and it combines locomotion (i.e. crawling and swimming) and manipulation capabilities. A first prototype of the robot is illustrated based on the integration of existing prototypes
Bioinspired Soft Actuation System Using Shape Memory Alloys
Soft robotics requires technologies that are capable of generating forces even though the bodies are composed of very light, flexible and soft elements. A soft actuation mechanism was developed in this work, taking inspiration from the arm of the Octopus vulgaris, specifically from the muscular hydrostat which represents its constitutive muscular structure. On the basis of the authors’ previous works on shape memory alloy (SMA) springs used as soft actuators, a specific arrangement of such SMA springs is presented, which is combined with a flexible braided sleeve featuring a conical shape and a motor-driven cable. This robot arm is able to perform tasks in water such as grasping, multi-bending gestures, shortening and elongation along its longitudinal axis. The whole structure of the arm is described in detail and experimental results on workspace, bending and grasping capabilities and generated forces are presented. Moreover, this paper demonstrates that it is possible to realize a self-contained octopus-like robotic arm with no rigid parts, highly adaptable and suitable to be mounted on underwater vehicles. Its softness allows interaction with all types of objects with very low risks of damage and limited safety issues, while at the same time producing relatively high forces when necessary
- …
