2,685 research outputs found
Axonal maintenance, glia, exosomes, and heat shock proteins
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in F1000Research 5 (2016): 205, doi:10.12688/f1000research.7247.1.Of all cellular specializations, the axon is especially distinctive because it is a narrow cylinder of specialized cytoplasm called axoplasm with a length that may be orders of magnitude greater than the diameter of the cell body from which it originates. Thus, the volume of axoplasm can be much greater than the cytoplasm in the cell body. This fact raises a logistical problem with regard to axonal maintenance. Many of the components of axoplasm, such as soluble proteins and cytoskeleton, are slowly transported, taking weeks to months to travel the length of axons longer than a few millimeters after being synthesized in the cell body. Furthermore, this slow rate of supply suggests that the axon itself might not have the capacity to respond fast enough to compensate for damage to transported macromolecules. Such damage is likely in view of the mechanical fragility of an axon, especially those innervating the limbs, as rapid limb motion with high impact, like running, subjects the axons in the limbs to considerable mechanical force. Some researchers have suggested that local, intra-axonal protein synthesis is the answer to this problem. However, the translational state of axonal RNAs remains controversial. We suggest that glial cells, which envelop all axons, whether myelinated or not, are the local sources of replacement and repair macromolecules for long axons. The plausibility of this hypothesis is reinforced by reviewing several decades of work on glia-axon macromolecular transfer, together with recent investigations of exosomes and other extracellular vesicles, as vehicles for the transmission of membrane and cytoplasmic components from one cell to another.Harold Gainer’s contribution to this research was supported by the Intramural Research Program of the NINDS, NIH
Zcitlivění ke korozi jako iniciátor únavového lomu lopatek kompresoru
Abstract
Certain failures of stainless steels interpreted purely in terms of fracture mechanisms may in fact be closely associated with previous damage caused by localized corrosion. The closeness of the link between fatigue and corrosion is documented by the case history of compressor blades made of grade 14Cr17Ni2 (X14CrNi17-2) stainless steel. Fatigue fracturing observed in areas near the blade root tended to follow intergranular pathways, indicating that some additional mechanism other than fatigue might be involved. This suspicion was confirmed by electrochemical potentiokinetic reactivation (EPR) measurements in situ, which revealed sensitization to intergranular corrosion. It has been found that at the transition between the blade root and the blade proper the surfaces had been ground and polished too vigorously, heating the subcutaneous layers to within the danger zone of 400-600°C. Preferential integranular attack in these locations was the initiation mechanism that provoked a subsequent failure of the blades by fatigue fracture.Určité poruchy korozivzdorných ocelí zdůvodňované čistě ve smyslu lomové mechaniky mohou být ve skutečnosti úzce spojeny s dřívějším poškozením způsobeným místní korozí. Souvislost mezi únavou a korozí představuje případ lopatek kompresoru vyrobených z korozivzdorné oceli typu 14Cr17Ni2. Únavové poškození (praskání) pozorované v oblastech blízko paty lopatky má tendenci sledovat mezikrystalovou cestu. To naznačuje, že přichází v úvahu i jiný mechanismus vzniku trhlin, než je únava materiálu. Toto podezření bylo potvrzeno elektrochemickým potenciokinetickým reaktivačním (EPR) měřením „in situ―, které odhalilo zcitlivění k mezikrystalové korozi. Bylo zjištěno, že v přechodu mezi patou lopatky a ostatními povrchy byla broušena a leštěna příliš razantně a došlo k ohřátí povrchových vrstev v rozsahu teplot 400-600°C. Přednostní mezikrystalové napadení v těchto místech bylo iniciačním mechanizmem pro vyvolání následujícího poškození lopatek únavovým lomem
Involvement of Purinergic P2X4 Receptors in Alcohol Intake of High-Alcohol-Drinking (HAD) Rats
Background: The P2X4 receptor is thought to be involved in regulating alcohol-consuming behaviors and ethanol (EtOH) has been reported to inhibit P2X4 receptors. Ivermectin is an anti-parasitic agent that acts as a positive allosteric modulator of the P2X4 receptor. The current study examined the effects of systemically- and centrally-administered ivermectin on alcohol drinking of replicate lines of high-alcohol-drinking (HAD-1/HAD-2) rats, and the effects of lentiviral-delivered short-hairpin RNAs (shRNAs) targeting P2rx4 on EtOH intake of female HAD2 rats. Method: For the 1st experiment, adult male HAD-1 & HAD-2 rats were given 24-hr free-choice access to 15% EtOH vs. water. Dose-response effects of ivermectin (1.5 to 7.5 mg/kg i.p.) on EtOH intake were determined; the effects of ivermectin were then examined for 2% w/v sucrose intake over 5 consecutive days. In the 2nd experiment, female HAD-2 rats were trained to consume 15% EtOH under 2-hr limited access conditions, and dose-response effects of intracerebroventricular (ICV) administration of ivermectin (0.5 to 2.0 μg) were determined over 5 consecutive days. The 3rd experiment determined the effects of microinfusion of a lentivirus expressing P2rx4 shRNAs into the posterior ventral tegmental area (VTA) on 24-hr EtOH free-choice drinking of female HAD-2 rats. Results: The highest i.p. dose of ivermectin reduced alcohol drinking (30-45%) in both rat lines, but did not alter sucrose intake. HAD-2 rats appeared to be more sensitive than HAD1 rats to the effects of ivermectin. ICV administration of ivermectin reduced 2-hr limited access intake (∼35%) of femal
Molecular evidence for zoonotic transmission of Giardia duodenalis among dairy farm workers in West Bengal, India
No study in the past has examined the genetic diversity and zoonotic potential of Giardia duodenalis in dairy cattle in India. To assess the importance of these animals as a source of human G. duodenalis infections and determine the epidemiology of bovine giardiasis in India, fecal samples from 180 calves, heifers and adults and 51 dairy farm workers on two dairy farms in West Bengal, India were genotyped by PCR-RFLP analysis of the β-giardin gene of G. duodenalis followed by DNA sequencing of the nested PCR products. The overall prevalence of G. duodenalis in cattle was 12.2% (22/180), the infection being more prevalent in younger calves than in adult cattle. Zoonotic G. duodenalis Assemblage A1 was identified in both calves and workers although the most prevalent genotype detected in cattle was a novel Assemblage E subgenotype. These findings clearly suggest that there is a potential risk of zoonotic transmission of G. duodenalis infections between cattle and humans on dairy farms in India
Springs in the High Bieszczady Mountains
Characteristic of springs occurrence in the High Bieszczady Mountains (Outer
Carpathians) is presented. Types of springs, its discharge and spring density index are described. Moreover distribution of springs in relation to geological structures and tectonics of the study area have been analysed. Results of research available in publications of various authors and results obtained from mapping of springs in the Polonina Wetlinska massif which was carried out in 2009-2011 are compared in the paper
Reduced Levels of mGlu2 Receptors within the Prelimbic Cortex Are Not Associated with Elevated Glutamate Transmission or High Alcohol Drinking
Background
A Grm2 cys407* stop codon mutation, which results in a loss of the metabotropic glutamate 2 (mGlu2) receptor protein, was identified as being associated with high alcohol drinking by alcohol-preferring (P) rats. The objectives of the current study were to characterize the effects of reduced levels of mGlu2 receptors on glutamate transmission and alcohol drinking.
Methods
Quantitative no-net-flux microdialysis was used to test the hypothesis that basal extracellular glutamate levels in the prelimbic (PL) cortex and nucleus accumbens shell (NACsh) will be higher in P than Wistar rats. A lentiviral-delivered short-hairpin RNA (shRNA)-mediated knockdown was used to test the hypothesis that reduced levels of mGlu2 receptors within the PL cortex will increase voluntary alcohol drinking by Wistar rats. A linear regression analysis was used to test the hypothesis that there will be a significant correlation between the Grm2 cys407* mutation and level of alcohol intake.
Results
Extracellular glutamate concentrations within the PL cortex (3.6 ± 0.6 vs. 6.4 ± 0.6 μM) and NACsh (3.2 ± 0.4 vs. 6.6 ± 0.6 μM) were significantly lower in female P than female Wistar rats. Western blot detected the presence of mGlu2 receptors in these regions of female Wistar rats, but not female P rats. Micro-infusion of shRNAs into the PL cortex significantly reduced local mGlu2 receptor levels (by 40%), but did not alter voluntary alcohol drinking in male Wistar rats. In addition, there was no significant correlation between the Grm2 mutation and alcohol intake in 36 rodent lines (r = 0.29, p > 0.05).
Conclusions
Collectively, these results suggest a lack of association between the loss of mGlu2 receptors and glutamate transmission in the NACsh and PL cortex of female P rats, and between the level of mGlu2 receptors in the PL cortex and alcohol drinking of male Wistar rats
Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4)
RATIONALE: Phosphodiesterase-4 (PDE4) and neuroimmune signaling have been posited to regulate alcohol drinking.
OBJECTIVES: This study evaluated the involvement of PDE4 and Il22ra2 on ethanol (EtOH) intake by alcohol-preferring (P) and high-alcohol-drinking (HAD1) rats.
METHODS: Exp 1 determined the dose-response effects of PDE4 inhibitors, rolipram, and Ro 20-1724, on 2 h/day free-choice EtOH intake by adult P and HAD1 rats. Exps 2-3 examined the effects of repeated administration with the PDE4 inhibitors on EtOH or sucrose intake and locomotor behavior. Exp 4 determined Pde4-associated gene expression differences in subregions of the extended amygdala, between high- and low-alcohol-consuming rat lines. Exp 5 evaluated the effects of infusing short hairpin RNA to knock down Il22ra2 in the nucleus accumbens (NAc) shell on a 24-h free-choice EtOH drinking by P rats.
RESULTS: Administration of rolipram or Ro 20-1724 reduced EtOH intake by P rats; Ro 20-1724 reduced EtOH intake by HAD1 rats. Repeated rolipram or Ro 20-1724 exposure reduced EtOH intake by P and HAD1 rats. PDE4 inhibition induced motor impairment during the first hour of EtOH intake by P rats. Higher gene expression levels for PDE4A were found in the NAc shell of P vs NP rats. ShRNAs targeting Il22ra2 in the NAc shell significantly reduced chronic EtOH intake.
CONCLUSIONS: PDE4 and neuroinflammatory/immune signaling pathways could represent molecular targets for the treatment of alcohol use disorders in genetically predisposed subjects. This study underscores the importance of testing compounds over multiple days and rat lines when determining efficacy to disrupt excessive alcohol intake
- …
