77 research outputs found

    Gene expression profiling of breast tumours from New Zealand patients

    Get PDF
    AIMS: New Zealand has one of the highest rates of breast cancer incidence in the world. We investigated the gene expression profiles of breast tumours from New Zealand patients, compared them to gene expression profiles of international breast cancer cohorts and identified any associations between altered gene expression and the clinicopathological features of the tumours. METHODS: Affymetrix microarrays were used to measure the gene expression profiles of 106 breast tumours from New Zealand patients. Gene expression data from six international breast cancer cohorts were collated, and all the gene expression data were analysed using standard bioinformatic and statistical tools. RESULTS: Gene expression profiles associated with tumour ER and ERBB2 status, molecular subtype and selected gene expression signatures within the New Zealand cohort were consistent with those found in international cohorts. Significant differences in clinicopathological features such as tumour grade, tumour size and lymph node status were also observed between the New Zealand and international cohorts. CONCLUSIONS: Gene expression profiles, which are a sensitive indicator of tumour biology, showed no clear di¬fference between breast tumours from New Zealand patients and those from non-New Zealand patients. This suggests that other factors may contribute to the high and increasing breast cancer incidence in New Zealand compared to international populations

    Analysis of HER2-Low Breast Cancer in Aotearoa New Zealand: A Nationwide Retrospective Cohort Study

    Get PDF
    OBJECTIVES: To perform the first national analysis of demographic and clinicopathological features associated with the HER2 positive, HER2-low, and HER2-zero invasive breast cancers in New Zealand. The study will reveal the proportion of women who may benefit from new HER2-targeted antibody drug conjugate (ADC) therapies. METHODS: Utilising data from Te Rēhita Mate Ūtaetae (Breast Cancer Foundation NZ National Register), the study analysed data from women diagnosed with invasive breast cancer over a 21-year period. The HER2 status of tumours was classified into three categories-HER2-zero, HER2-low, HER2-positive. RESULTS: From 2009-2021, 94% of women underwent HER2 testing, with 14% diagnosed with HER2-positive breast cancer. For advanced-stage disease, 38% of those formerly classified as HER2-negative were reclassified as HER2-low. Including HER2-positive breast cancers, this indicates that 60% of women with advanced breast cancer may potentially benefit from the new HER2-directed ADCs (approximately 120 women per year). CONCLUSIONS: The findings suggest a significant proportion of women with invasive breast cancer in New Zealand could benefit from new HER2-targeted treatments. There is a need to standardise HER2 testing to enhance personalised treatment and improve outcomes.fals

    Breast Cancer Patient Prognosis Is Determined by the Interplay between TP53 Mutation and Alternative Transcript Expression: Insights from TP53 Long Amplicon Digital PCR Assays

    Get PDF
    The TP53 gene locus is capable of producing multiple RNA transcripts encoding the different p53 protein isoforms. We recently described multiplex long amplicon droplet digital PCR (ddPCR) assays to quantify seven of eight TP53 reference transcripts in human tumors. Here, we describe a new long amplicon ddPCR assay to quantify expression of the eighth TP53 reference transcript encoding ∆40p53α. We then applied these assays, alongside DNA sequencing of the TP53 gene locus, to tumors from a cohort of New Zealand (NZ) breast cancer patients. We found a high prevalence of mutations at TP53 splice sites in the NZ breast cancer cohort. Mutations at TP53 intron 4 splice sites were associated with overexpression of ∆133TP53 transcripts. Cox proportional hazards survival analysis showed that interplay between TP53 mutation status and expression of TP53 transcript variants was significantly associated with patient outcome, over and above standard clinical and pathological information. In particular, patients with no TP53 mutation and a low ratio of TP53 transcripts t2 to t1, which derive from alternative intron 1 acceptor splice sites, had a remarkably good outcome. We suggest that this type of analysis, integrating mutation and transcript expression, provides a step-change in our understanding of TP53 in cancer.fals

    Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells

    Get PDF
    This study aimed at development of poly (lactic-co-glycolic acid) (PLGA) nanoparticles embedded with paclitaxel and coated with hyaluronic acid (HA-PTX-PLGA) to actively target the drug to a triple negative breast cancer cells. Nanoparticles were successfully fabricated using a modified oil-in-water emulsion method. The effect of various formulations parameters on the physicochemical properties of the nanoparticles was investigated. SEM imaging confirmed the spherical shape and nano-scale size of the nanoparticles. A sustained drug release profile was obtained and enhanced PTX cytotoxicity was observed when MDA-MB-231 cells were incubated with the HA-PTX-PLGA formulation compared to cells incubated with the non-HA coated nanoparticles. Moreover, HA-PLGA nanoparticles exhibited improved cellular uptake, based on a possible receptor mediated endocytosis due to interaction of HA with CD44 receptors when compared to non-coated PLGA nanoparticles. The non-haemolytic potential of the nanoparticles indicated the suitability of the developed formulation for intravenous administration

    Assessment of amino acid charge states based on cryo-electron microscopy and molecular dynamics simulations of respiratory complex I

    Get PDF
    The charge states of titratable amino acid residues play a key role in the function of membrane-bound bioenergetic proteins. However, determination of these charge states both through experimental and computational approaches is extremely challenging. Cryo-EM density maps can provide insights on the charge states of titratable amino acid residues. By performing classical atomistic molecular dynamics simulations on the high resolution cryo-EM structures of respiratory complex I from Yarrowia lipolytica, we analyze the conformational and charge states of a key acidic residue in its ND1 subunit, aspartic acid D203, which is also a mitochondrial disease mutation locus. We suggest that in the native state of respiratory complex I, D203 is negatively charged and maintains a stable hydrogen bond to a conserved arginine residue. Alternatively, upon conformational change in the turnover state of the enzyme, its sidechain attains a charge-neutral status. We discuss the implications of this analysis on the molecular mechanism of respiratory complex I

    Accessing a New Dimension in TP53 Biology: Multiplex Long Amplicon Digital PCR to Specifically Detect and Quantitate Individual TP53 Transcripts

    Get PDF
    TP53, the most commonly-mutated gene in cancer, undergoes complex alternative splicing. Different TP53 transcripts play different biological roles, both in normal function and in the progression of diseases such as cancer. The study of TP53's alternative RNA splice forms and their use as clinical biomarkers has been hampered by limited specificity and quantitative accuracy of current methods. TP53 RNA splice variants differ at both 5' and 3' ends, but because they have a common central region of 618 bp, the individual TP53 transcripts are impossible to specifically detect and precisely quantitate using standard PCR-based methods or short-read RNA sequencing. Therefore, we devised multiplex probe-based long amplicon droplet digital PCR (ddPCR) assays, which for the first time allow precise end-to-end quantitation of the seven major TP53 transcripts, with amplicons ranging from 0.85 to 1.85 kb. Multiple modifications to standard ddPCR assay procedures were required to enable specific co-amplification of these long transcripts and to overcome issues with secondary structure. Using these assays, we show that several TP53 transcripts are co-expressed in breast cancers, and illustrate the potential for this method to identify novel TP53 transcripts in tumour cells. This capability will facilitate a new level of biological and clinical understanding of the alternatively-spliced TP53 isoforms.fals

    The importance of RT-qPCR primer design for the detection of siRNA-mediated mRNA silencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of RNAi to analyse gene function <it>in vitro </it>is now widely applied in biological research. However, several difficulties are associated with its use <it>in vivo</it>, mainly relating to inefficient delivery and non-specific effects of short RNA duplexes in animal models. The latter can lead to false positive results when real-time RT-qPCR alone is used to measure target mRNA knockdown.</p> <p>Findings</p> <p>We observed that detection of an apparent siRNA-mediated knockdown <it>in vivo </it>was dependent on the primers used for real-time RT-qPCR measurement of the target mRNA. Two siRNAs specific for <it>RRM1 </it>with equivalent activity <it>in vitro </it>were administered to A549 xenografts via intratumoural injection. In each case, apparent knockdown of <it>RRM1 </it>mRNA was observed only when the primer pair used in RT-qPCR flanked the siRNA cleavage site. This false-positive result was found to result from co-purified siRNA interfering with both reverse transcription and qPCR.</p> <p>Conclusions</p> <p>Our data suggest that using primers flanking the siRNA-mediated cleavage site in RT-qPCR-based measurements of mRNA knockdown <it>in vivo </it>can lead to false positive results. This is particularly relevant where high concentrations of siRNA are introduced, particularly via intratumoural injection, as the siRNA may be co-purified with the RNA and interfere with downstream enzymatic steps. Based on these results, using primers flanking the siRNA target site should be avoided when measuring knockdown of target mRNA by real-time RT-qPCR.</p

    Y-box protein-1/p18 fragment identifies malignancies in patients with chronic liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunohistochemical detection of cold shock proteins is predictive for deleterious outcome in various malignant diseases. We recently described active secretion of a family member, denoted Y-box (YB) protein-1. We tested the clinical and diagnostic value of YB-1 protein fragment p18 (YB-1/p18) detection in blood for malignant diseases.</p> <p>Methods</p> <p>We used a novel monoclonal anti-YB-1 antibody to detect YB-1/p18 by immunoblotting in plasma samples of healthy volunteers (n = 33), patients with non-cancerous, mostly inflammatory diseases (n = 60), hepatocellular carcinoma (HCC; n = 25) and advanced solid tumors (n = 20). YB-1/p18 was then tested in 111 patients with chronic liver diseases, alongside established tumor markers and various diagnostic measures, during evaluation for potential liver transplantation.</p> <p>Results</p> <p>We developed a novel immunoblot to detect the 18 kD fragment of secreted YB-1 in human plasma (YB-1/p18) that contains the cold-shock domains (CSD) 1-3 of the full-length protein. YB-1/p18 was detected in 11/25 HCC and 16/20 advanced carcinomas compared to 0/33 healthy volunteers and 10/60 patients with non-cancerous diseases. In 111 patients with chronic liver disease, YB-1/p18 was detected in 20 samples. Its occurrence was not associated with advanced Child stages of liver cirrhosis or liver function. In this cohort, YB-1/p18 was not a good marker for HCC, but proved most powerful in detecting malignancies other than HCC (60% positive) with a lower rate of false-positive results compared to established tumor markers. Alpha-fetoprotein (AFP) was most sensitive in detecting HCC, but simultaneous assessment of AFP, CA19-9 and YB-1/p18 improved overall identification of HCC patients.</p> <p>Conclusions</p> <p>Plasma YB-1/p18 can identify patients with malignancies, independent of acute inflammation, renal impairment or liver dysfunction. The detection of YB-1/p18 in human plasma may have potential as a tumor marker for screening of high-risk populations, e.g. before organ transplantation, and should therefore be evaluated in larger prospective studies.</p

    Implementing the My Positive Health dialogue tool for children with a chronic condition: barriers and facilitators

    Get PDF
    BACKGROUND: The My Positive Health (MPH) dialogue tool for children was developed to aid children and teenagers in reflecting and communicating about their health from a broader perspective. This study investigates facilitators and barriers to implementation in pediatric care and assesses experiences of healthcare professionals (HCPs) and children regarding effectiveness. METHODS: We conducted a mixed-methods study involving six Dutch pediatric outpatient clinics. Quantitative data on facilitators and barriers were obtained from 18 out of 20 participating HCPs (pediatricians, nurse practitioners and physician assistants) using the Measurement Instrument for Determinants of Innovations. Additionally, qualitative insights were gathered through semi-structured interviews with 17 HCPs and 30 children (8-18 years old) with chronic conditions. RESULTS: Facilitators identified in both user and innovation domains included improved patient understanding and the tool's simplicity, while barriers involved organizational constraints and integration issues, for example limited resources and lack of organizational support. Participating HCPs highlighted the tool's role in fostering person-centered conversations, especially for children with chronic conditions. Children positively viewed the tool, noting its ability to enable deeper, personalized interactions with HCPs. CONCLUSION: This study on the implementation of the MPH dialogue tool for children in pediatric care highlights its user-friendliness and relevance, alongside challenges like organizational constraints. Beneficial for person-centered care and children's active participation, the tool enhanced healthcare dialogues and empowered children in their health journey. However, HCPs faced integration challenges within existing practices. Addressing these barriers and providing organizational support are vital for effectively implementing the MPH dialogue tool and optimizing pediatric patient engagement and care quality

    Acute Cellular Alterations in the Hippocampus After Status Epilepticus

    Full text link
    The critical, fundamental mechanisms that determine the emergence of status epilepticus from a single seizure and the prolonged duration of status epilepticus are uncertain. However, several general concepts of the pathophysiology of status epilepticus have emerged: (a) the hippocampus is consistently activated during status epilepticus; (b) loss of GABA-mediated inhibitory synaptic transmission in the hippocampus is critical for emergence of status epilepticus; and, finally (c) glutamatergic excitatory synaptic transmission is important in sustaining status epilepticus. This review focuses on the alteration of GABAergic inhibition in the hippocampus that occurs during the prolonged seizures of status epilepticus. If reduction in GABAergic inhibition leads to development of status epilepticus, enhancement of GABAergic inhibition would be expected to interrupt status epilepticus. Benzodiazepines and barbiturates are both used in the treatment of status epilepticus and both drugs enhance GABA A receptor-mediated inhibition. However, patients often become refractory to benzodiazepines when seizures are prolonged, and barbiturates are often then used for these refractory cases of status epilepticus. Recent evidence suggests the presence of multiple GABA A receptor isoforms in the hippocampus with different sensitivity to benzodiazepines but similar sensitivity to barbiturates, thus explaining why the two drug classes might have different clinical effects. In addition, rapid functional plasticity of GABA A receptors has been demonstrated to occur during status epilepticus in rats. During status epilepticus, there was a substantial reduction of diazepam potency for termination of the seizures. The loss of sensitivity of the animals to diazepam during status epilepticus was accompanied by an alteration in the functional properties of hippocampal dentate granule cell GABA A receptors. Dentate granule cell GABA A receptor currents from rats undergoing status epilepticus had reduced sensitivity to diazepam and zinc but normal sensitivity to GABA and pentobarbital. Therefore, the prolonged seizures of status epilepticus rapidly altered the functional properties of hippocampal dentate granule cell GABA A receptors, possibly explaining why benzodiazepines and barbiturates may not be equally effective during treatment of the prolonged seizures of status epilepticus. A comprehensive understanding of the cellular and molecular events leading to the development, maintenance, and cytotoxicity of status epilepticus should permit development of more effective treatment strategies and reduction in the mortality and morbidity of status epilepticus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65664/1/j.1528-1157.1999.tb00873.x.pd
    corecore