646 research outputs found
Low-lying magnetic excitations of doubly-closed-shell nuclei and nucleon-nucleon effective interactions
We have studied the low lying magnetic spectra of 12C, 16O, 40Ca, 48Ca and
208Pb nuclei within the Random Phase Approximation (RPA) theory, finding that
the description of low-lying magnetic states of doubly-closed-shell nuclei
imposes severe constraints on the spin and tensor terms of the nucleon-nucleon
effective interaction. We have first made an investigation by using four
phenomenological effective interactions and we have obtained good agreement
with the experimental magnetic spectra, and, to a lesser extent, with the
electron scattering responses. Then we have made self-consistent RPA
calculations to test the validity of the finite-range D1 Gogny interaction. For
all the nuclei under study we have found that this interaction inverts the
energies of all the magnetic states forming isospin doublets.Comment: 19 pages, 13 figures, 7 tables, accepted for publication in Phys.
Rev.
Pygmy dipole strength close to particle-separation energies - the case of the Mo isotopes
The distribution of electromagnetic dipole strength in 92, 98, 100 Mo has
been investigated by photon scattering using bremsstrahlung from the new ELBE
facility. The experimental data for well separated nuclear resonances indicate
a transition from a regular to a chaotic behaviour above 4 MeV of excitation
energy. As the strength distributions follow a Porter-Thomas distribution much
of the dipole strength is found in weak and in unresolved resonances appearing
as fluctuating cross section. An analysis of this quasi-continuum - here
applied to nuclear resonance fluorescence in a novel way - delivers dipole
strength functions, which are combining smoothly to those obtained from
(g,n)-data. Enhancements at 6.5 MeV and at ~9 MeV are linked to the pygmy
dipole resonances postulated to occur in heavy nuclei.Comment: 6 pages, 5 figures, proceedings Nuclear Physics in Astrophysics II,
May 16-20, Debrecen, Hungary. The original publication is available at
www.eurphysj.or
09131 Abstracts Collection -- Service Level Agreements in Grids
From 22.03. to 27.03.09, the Dagstuhl Seminar 09131 ``Service Level Agreements in Grids \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
Collective Excitations of (154)Sm nucleus at FEL{gamma}+LHC Collider
The production of collective excitations of the (154)Sm at FEL{gamma}+LHC
collider is investigated. We show that this machine will be a powerful tool for
investigation of high energy level excitations.Comment: 6 pages, 1 figure, 4 table
Photon data shed new light upon the GDR spreading width in heavy nuclei
A global study of the electric dipole strength in and below the isovector
giant dipole resonance (GDR) is presented for mass numbers A>80. It relies on
the recently established remarkably good match between data for the nuclear
photo effect to novel photon scattering data covering the region below the
neutron emission threshold as well as by average resonance neutron capture
(ARC). From the wide energy coverage of these data the correlation of the GDR
spreading width with energy can be studied with remarkable accuracy. A clear
sensitivity to details of the nuclear shape, i.e. the beta- and
gamma-deformations, is demonstrated. Based hereon a new parameterization of the
energy dependence of the nuclear electric-dipole strength is proposed which -
with only two new parameters - allows to describe the dipole strength in all
heavy nuclei with A>80. Although it differs significantly from previous
parameterizations it holds for spherical, transitional, triaxial and well
deformed nuclei. The GDR spreading width depends in a regular way on the
respective resonance energy, but it is independent of the photon energy.Comment: accepted by Phys. Lett. B after minor modification
Concentration of electric dipole strength below the neutron separation energy in N = 82 nuclei
The semi-magic nuclei Ba-138, Ce-140, and Sm-144 have been investigated in
photon scattering experiments up to an excitation energy of about 10 MeV. The
distribution of the electric dipole strength shows a resonance like structure
at energies between 5.5 and 8 MeV exhausting up to 1% of the isovector E1
Energy Weighted Sum Rule.Comment: 10 pages, 3 figure
M1 Resonances in Unstable Magic Nuclei
Within a microscopic approach which takes into account RPA configurations,
the single-particle continuum and more complex
configurations isoscalar and isovector M1 excitations for the unstable nuclei
Ni and Sn are calculated. For comparison, the
experimentally known M1 excitations in Ca and Pb have also been
calculated. In the latter nuclei good agreement in the centroid energy, the
total transition strength and the resonance width is obtained. With the same
parameters we predict the magnetic excitations for the unstable nuclei. The
strength is sufficiently concentrated to be measurable in radioactive beam
experiments. New features are found for the very neutron rich nucleus Ni
and the neutron deficient nucleus Sn.Comment: 17 pages (LATEX), 12 figures (available from the authors),
KFA-IKP(TH)-1993-0
Performance metrics and auditing framework using application kernels for high‐performance computer systems
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97468/1/cpe2871.pd
The Open Grid Computing Environments collaboration: portlets and services for science gateways
We review the efforts of the Open Grid Computing Environments collaboration. By adopting a general three-tiered architecture based on common standards for portlets and Grid Web services, we can deliver numerous capabilities to science gateways from our diverse constituent efforts. In this paper, we discuss our support for standards-based Grid portlets using the Velocity development environment. Our Grid portlets are based on abstraction layers provided by the Java CoG kit, which hide the differences of different Grid toolkits. Sophisticated services are decoupled from the portal container using Web service strategies. We describe advance information, semantic data, collaboration, and science application services developed by our consortium. Copyright © 2006 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56029/1/1078_ftp.pd
An Overview of MLCommons Cloud Mask Benchmark: Related Research and Data
Cloud masking is a crucial task that is well-motivated for meteorology and
its applications in environmental and atmospheric sciences. Its goal is, given
satellite images, to accurately generate cloud masks that identify each pixel
in image to contain either cloud or clear sky. In this paper, we summarize some
of the ongoing research activities in cloud masking, with a focus on the
research and benchmark currently conducted in MLCommons Science Working Group.
This overview is produced with the hope that others will have an easier time
getting started and collaborate on the activities related to MLCommons Cloud
Mask Benchmark.Comment: 13 pages, 2 tables 7 figures, 3 appendi
- …
