241 research outputs found

    Non-commutative SU(N) gauge theories and asymptotic freedom

    Get PDF
    In this paper we analyze the one-loop renormalization of the θ\theta-expanded SU(N)\rm SU(N) Yang-Mills theory. We show that the {\it freedom parameter} aa, key to renormalization, originates from higher order non-commutative gauge interaction, represented by a higher derivative term bhθμνF^μνF^ρσF^ρσ b h \theta^{\mu\nu}\hat F_{\mu\nu}\star\hat F_{\rho\sigma}\star\hat F^{\rho\sigma}. The renormalization condition fixes the allowed values of the parameter aa to one of the two solutions: a=1a=1 or a=3a=3, i.e. to b=0b=0 or to b=1/2b=1/2, respectively. When the higher order interaction is switched on, (a=3a=3), pure non-commutative SU(N) gauge theory at first order in θ\theta-expansion becomes one-loop renormalizable for various representations of the gauge group. We also show that, in the case a=3a=3 and the adjoint representation of the gauge fields, the non-commutative deformation parameter hh has to be renormalized and it is asymptotically free.Comment: 16 pages, no figure

    The one-loop renormalization of the gauge sector in the noncommutative standard model

    Get PDF
    In this paper we construct a version of the standard model gauge sector on noncommutative space-time which is one-loop renormalizable to first order in the expansion in the noncommutativity parameter θ\theta. The one-loop renormalizability is obtained by the Seiberg-Witten redefinition of the noncommutative gauge potential for the model containing the usual six representations of matter fields of the first generation.Comment: 16 pages, 2 figure

    Renormalizability of noncommutative SU(N) gauge theory

    Full text link
    We analyze the renormalizability properties of pure gauge noncommutative SU(N) theory in the θ\theta-expanded approach. We find that the theory is one-loop renormalizable to first order in θ\theta.Comment: 11 pages, minor changes, accepted for publication in JHE

    TeV Scale Implications of Non Commutative Space time in Laboratory Frame with Polarized Beams

    Full text link
    We analyze e+eγγe^{+}e^{-}\rightarrow \gamma\gamma, eγeγe^{-}\gamma \rightarrow e^{-}\gamma and γγe+e\gamma\gamma \rightarrow e^{+}e^{-} processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative(NC) parameter i.e. O(Θ2)O(\Theta^2), while with polarized beams these corrections appear at first order (O(Θ)O(\Theta)) in cross section. The corrections in Compton case can probe the magnetic component(ΘB\vec{\Theta}_B) while in Pair production and Pair annihilation probe the electric component(ΘE\vec{\Theta}_E) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider(ILC).Comment: 22 pages, 19 figures, new comments and references added, few typos corrected, Published in JHE

    Psychometric properties of the Serbian Smartphone Application-Based Addiction Scale (SABAS) and validation of the English version among non-native English speakers problematic smartphone use and smartphone addiction

    Get PDF
    The present study evaluated the psychometric properties of the Serbian Smartphone Application-Based Addiction Scale (SABAS) and the original English version of the same scale administered to a Serbian-speaking sample. In Study 1, 599 participants completed Serbian SABAS, with 189 having both test and retest data. Results suggested good internal consistency (α = .81) and test–retest reliability (ICC = .795, p < .001, 95% CI [.731, .844], rtest-retest = .803) of the scale. Convergent validity of the SABAS was evaluated through correlations with the Smartphone Addiction Scale–Short Version (SAS-SV), as well as with anxiety, depression, worry, duration, and purpose of smartphone use. Divergent validity of the SABAS was evaluated through comparing the correlations with entertainment and productive smartphone use. The modified CFA model showed an acceptable fit (χ2(8) = 25.53, p = .001, CFI = .961, TLI = .926, RMSEA = .096, SRMR = .042), confirming the unidimensionality of the SABAS. In the second study, the English SABAS, completed by 335 non-native speakers from Serbia, also showed a good fit of the single-factor model (χ2(9) = 12.56, p = .184, CFI = .990, TLI = .984, RMSEA = .036, SRMR = 0.026), and good psychometric features. Based on the study’s findings, the Serbian version of SABAS is a reliable and valid measure for screening the risk of smartphone addiction. Moreover, the English version can be used among non-native Serbian English speakers

    The absence of the 4ψ\psi divergence in noncommutative chiral models

    Full text link
    In this paper we show that in the noncommutative chiral gauge theories the 4-fermion vertices are finite. The 4ψ4\psi-vertices appear in linear order in quantization of the θ\theta-expanded noncommutative gauge theories; in all previously considered models, based on Dirac fermions, the 4ψ4\psi-vertices were divergent and nonrenormalizable.Comment: 7 page

    International Ocean Discovery Program Expedition 393 Preliminary Report South Atlantic Transect 2

    Get PDF
    The South Atlantic Transect (SAT) is a multidisciplinary scientific ocean drilling experiment designed to investigate the evolution of the oceanic crust and overlying sediments across the western flank of the Mid-Atlantic Ridge. This project comprises four International Ocean Discovery Program expeditions: fully staffed Expeditions 390 and 393 (April–August 2022) built on engineering preparations during Expeditions 390C and 395E that took place without science parties during the height of the Coronavirus Disease 2019 (COVID-19) pandemic. Through operations along a crustal flow line at ~31°S, the SAT recovered complete sedimentary sections and the upper ~40–340 m of the underlying ocean crust formed at a slow to intermediate spreading rate at the Mid-Atlantic Ridge over the past ~61 My. The sediments along this transect were originally spot cored more than 50 y ago during Deep Sea Drilling Project Leg 3 (December 1968–January 1969) to help verify the theories of seafloor spreading and plate tectonics. The SAT expeditions targeted six primary sites on 7, 15, 31, 49, and 61 Ma ocean crust that fill critical gaps in our sampling of intact in situ ocean crust with regards to crustal age, spreading rate, and sediment thickness. Drilling these sites was required to investigate the history, duration, and intensity of the low-temperature hydrothermal interactions between the aging ocean crust and the evolving South Atlantic Ocean. This knowledge will improve the quantification of past hydrothermal contributions to global biogeochemical cycles and help develop a predictive understanding of the impacts of variable hydrothermal processes and exchanges. Samples from the transect of the previously unexplored sediment- and basalt-hosted deep biosphere beneath the South Atlantic Gyre are essential to refine global biomass estimates and examine microbial ecosystems’ responses to variable conditions in a low-energy gyre and aging ocean crust. The transect is located near World Ocean Circulation Experiment Line A10, which provides a baseline for records of carbonate chemistry and deepwater mass properties across the western South Atlantic through key Cenozoic intervals of elevated atmospheric CO2 and rapid climate change. Reconstruction of the history of the deep western boundary current and deepwater formation in the Atlantic basins will yield crucial data to test hypotheses regarding the role of evolving thermohaline circulation patterns in climate change and the effects of tectonic gateways and climate on ocean acidification. During engineering Expeditions 390C and 395E, a single hole was cored through the sediment cover and into the uppermost rocks of the ocean crust with the advanced piston corer (APC) and extended core barrel (XCB) systems at five of the six primary proposed SAT sites. Reentry systems with casing were then installed either into basement or within 10 m of basement at each of those five sites. Expedition 390 (7 April–7 June 2022) conducted operations at three of the SAT sites, recovering 700 m of core (77%) over 30.3 days of on-site operations. Sediment coring, basement coring, and wireline logging were conducted at two sites on 61 Ma crust (Sites U1556 and U1557), and sediment coring was completed at the 7 Ma Site U1559. Expedition 393 operated at four sites, drilling in 12 holes to complete this initial phase of the SAT. Complete sedimentary sections were collected at Sites U1558, U1583, and U1560 on 49, 31, and 15 Ma crust, respectively, and together with 257.7 m of sediments cored during earlier operations, more than 600 m of sediments was characterized. The uppermost ocean crust was drilled at Sites U1558, U1560, and U1583 with good penetration (~130 to ~204 meters subbasement), but at the youngest ~7 Ma Site U1559, only ~43 m of basement penetration was achieved in this initial attempt. Geophysical wireline logs were aquired at Sites U1583 and U1560. Expeditions 390 and 393 established legacy sites available for future deepening and downhole basement hydrothermal and microbiological experiments at Sites U1557, U1560, and U1559 on 61, 15, and 7 Ma crust, respectively

    On UV/IR mixing in noncommutative gauge field theories

    Full text link
    In formulating gauge field theories on noncommutative (NC) spaces it is suggested that particles carrying gauge invariant quantities should not be viewed as pointlike, but rather as extended objects whose sizes grow linearly with their momenta. This and other generic properties deriving from the nonlocal character of interactions (showing thus unambiguously their quantum-gravity origin) lead to a specific form of UV/IR mixing as well as to a pathological behavior at the quantum level when the noncommutativity parameter theta is set to be arbitrarily small. In spite of previous suggestions that in a NC gauge theory based on the theta-expanded Seiberg-Witten (SW) maps UV/IR mixing effects may be under control, a fairly recent study of photon self-energy within a SW theta-exact approach has shown that UV/IR mixing is still present. We study the self-energy contribution for neutral fermions in the theta-exact approach of NC QED, and show by explicit calculation that all but one divergence can be eliminated for a generic choice of the noncommutativity parameter theta. The remaining divergence is linked to the pointlike limit of an extended object.Comment: 10 pages, a figure added, version to appear in JHE

    Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera

    Get PDF
    Planktonic foraminifera are widely used in biostratigraphic, palaeoceanographic and evolutionary studies, but the strength of many study conclusions could be weakened if taxonomic identifications are not reproducible by different workers. In this study, to assess the relative importance of a range of possible reasons for among-worker disagreement in identification, 100 specimens of 26 species of macroperforate planktonic foraminifera were selected from a core-top site in the subtropical Pacific Ocean. Twenty-three scientists at different career stages - including some with only a few days experience of planktonic foraminifera - were asked to identify each specimen to species level, and to indicate their confidence in each identification. The participants were provided with a species list and had access to additional reference materials. We use generalised linear mixed-effects models to test the relevance of three sets of factors in identification accuracy: participant-level characteristics (including experience), species-level characteristics (including a participant's knowledge of the species) and specimen-level characteristics (size, confidence in identification). The 19 less experienced scientists achieve a median accuracy of 57%, which rises to 75% for specimens they are confident in. For the 4 most experienced participants, overall accuracy is 79%, rising to 93% when they are confident. To obtain maximum comparability and ease of analysis, everyone used a standard microscope with only 35 × magnification, and each specimen was studied in isolation. Consequently, these data provide a lower limit for an estimate of consistency. Importantly, participants could largely predict whether their identifications were correct or incorrect: their own assessments of specimen-level confidence and of their previous knowledge of species concepts were the strongest predictors of accuracy.</p
    corecore