3,567 research outputs found

    Stellar Radial Velocities in the Old Open Cluster M67 (NGC 2682) I. Memberships, Binaries, and Kinematics

    Full text link
    (Abridged) We present results from 13776 radial-velocity (RV) measurements of 1278 candidate members of the old (4 Gyr) open cluster M67 (NGC 2682). The measurements are the results of a long-term survey that includes data from seven telescopes with observations for some stars spanning over 40 years. For narrow-lined stars, RVs are measured with precisions ranging from about 0.1 to 0.8 km/s. The combined stellar sample reaches from the brightest giants in the cluster down to about 4 magnitudes below the main-sequence turnoff (V = 16.5), covering a mass range of about 1.34 MSun to 0.76 MSun. Spatially, the sample extends to a radius of 30 arcmin (7.4 pc in projection at a distant of 850 pc or 6-7 core radii). We find M67 to have a mean RV of +33.64 km/s (with an internal precision of +/- 0.03 km/s). For stars with >=3 measurements, we derive RV membership probabilities and identify RV variables, finding 562 cluster members, 142 of which show significant RV variability. We use these cluster members to construct a color-magnitude diagram and identify a rich sample of stars that lie far from the standard single star isochrone, including the well-known blue stragglers, sub-subgiants and yellow giants. These exotic stars have a binary frequency of (at least) 80%, more than three times that detected for stars in the remainder of the sample. We confirm that the cluster is mass segregated, finding the binaries to be more centrally concentrated than the single stars in our sample at the 99.8% confidence level. The blue stragglers are centrally concentrated as compared to the solar-type main-sequence single stars in the cluster at the 99.7% confidence level. Accounting for both measurement precision and undetected binaries, we derive a RV dispersion in M67 of 0.59 +0.07 -0.06 km/s, which yields a virial mass for the cluster of 2100 +610 -550 MSun. WIYN Open Cluster Study. LXVII.Comment: 19 pages, 10 figures, 4 tables, accepted for publication in The Astronomical Journa

    Determination of stellar, orbital and planetary parameters using complete Monte-Carlo analysis -- the case of HAT-P-7b

    Full text link
    The recently discovered transiting very hot Jupiter, HAT-P-7b, a planet detected by the telescopes of HATNet, turned out to be among the ones subjected to the highest irradiation from the parent star. As known, the combination of photometric and spectroscopic data for such an object yields the stellar, orbital and planetary parameters. In order to best characterize this particular planet, we carried out a complex analysis based on a complete and simultaneous Monte-Carlo solution using all available data. We included the discovery light curves, partial follow-up light curves, the radial velocity data, and we used the stellar evolution models to infer the stellar properties. This self-consistent way of modeling provides the most precise estimate of the a posteriori distributions of all of the system parameters of interest, and avoids making assumptions on the values and uncertainties of any of the internally derived variables describing the system. This analysis demonstrates that even partial light curve information can be valuable. This may become very important for future discoveries of planets with longer periods -- and therefore longer transit durations -- where the chance of observing a full event is small.Comment: 4 pages, 2 figures. To appear in the Proceedings of IAU Symposium 253, "Transiting Planets", May 2008, Cambridge, MA, US

    Studies of multiple stellar systems - III. Modulation of orbital elements in the triple-lined system HD 109648

    Get PDF
    The triple-lined spectroscopic triple system HD 109648 has one of the shortest periods known for the outer orbit in a late-type triple, 120.5 days, and the ratio between the periods of the outer and inner orbits is small, 22:1. With such extreme values, this system should show orbital element variations over a timescale of about a decade. We have monitored the radial velocities of HD 109648 with the CfA Digital Speedometers for eight years, and have found evidence for modulation of some orbital elements. While we see no definite evidence for modulation of the inner binary eccentricity, we clearly observe variations in the inner and outer longitudes of periastron, as well as in the radial velocity amplitudes of the three components. The observational results, combined with numerical simulations, allow us to put constraints on the orientation of the orbits.Comment: 11 pages, 7 figures, accepted by MNRA

    Studies of multiple stellar systems - IV. The triple-lined spectroscopic system Gliese 644

    Get PDF
    We present a radial-velocity study of the triple-lined system Gliese 644 and derive spectroscopic elements for the inner and outer orbits with periods of 2.9655 and 627 days. We also utilize old visual data, as well as modern speckle and adaptive optics observations, to derive a new astrometric solution for the outer orbit. These two orbits together allow us to derive masses for each of the three components in the system: M_A = 0.410 +/- 0.028 (6.9%), M_Ba = 0.336 +/- 0.016 (4.7%), and $M_Bb = 0.304 +/- 0.014 (4.7%) M_solar. We suggest that the relative inclination of the two orbits is very small. Our individual masses and spectroscopic light ratios for the three M stars in the Gliese 644 system provide three points for the mass-luminosity relation near the bottom of the Main Sequence, where the relation is poorly determined. These three points agree well with theoretical models for solar metallicity and an age of 5 Gyr. Our radial velocities for Gliese 643 and vB 8, two common-proper-motion companions of Gliese 644, support the interpretation that all five M stars are moving together in a physically bound group. We discuss possible scenarios for the formation and evolution of this configuration, such as the formation of all five stars in a sequence of fragmentation events leading directly to the hierarchical configuration now observed, versus formation in a small N cluster with subsequent dynamical evolution into the present hierarchical configuration.Comment: 17 pages, 9 figures, Accepted for publication in MNRA

    Parallel netCDF: A Scientific High-Performance I/O Interface

    Full text link
    Dataset storage, exchange, and access play a critical role in scientific applications. For such purposes netCDF serves as a portable and efficient file format and programming interface, which is popular in numerous scientific application domains. However, the original interface does not provide an efficient mechanism for parallel data storage and access. In this work, we present a new parallel interface for writing and reading netCDF datasets. This interface is derived with minimum changes from the serial netCDF interface but defines semantics for parallel access and is tailored for high performance. The underlying parallel I/O is achieved through MPI-IO, allowing for dramatic performance gains through the use of collective I/O optimizations. We compare the implementation strategies with HDF5 and analyze both. Our tests indicate programming convenience and significant I/O performance improvement with this parallel netCDF interface.Comment: 10 pages,7 figure

    Line Broadening in Field Metal-poor Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report 349 radial velocities for 45 metal-poor field red giant and red horizontal branch stars. We have have identified one new spectroscopic binary, HD 4306, and one possible such system, HD 184711. We also report 57 radial velocities for 11 of the 91 stars reported on previously by Carney et al. (2003). As was found in the previous study, radial velocity "jitter" is present in many of the most luminous stars. Excluding stars showing spectroscopic binary orbital motion, all 7 of the red giants with M(V) <= -2.0 display jitter, as well as 3 of the 14 stars with -2.0 <= M(V) <= -1.4. We have also measured line broadening in all of the new spectra, using synthetic spectra as templates. The most luminous red giants show significant line broadening, as do many of the red horizontal branch stars, and we discuss briefly possible causes.Comment: To appear in the Astronomical Journa

    HATNet Field G205: Follow-Up Observations of 28 Transiting-Planet candidates and Confirmation of the Planet HAT-P-8b

    Full text link
    We report the identification of 32 transiting-planet candidates in HATNet field G205. We describe the procedures that we have used to follow up these candidates with spectroscopic and photometric observations, and we present a status report on our interpretation of the 28 candidates for which we have follow-up observations. Eight are eclipsing binaries with orbital solutions whose periods are consistent with their photometric ephemerides; two of these spectroscopic orbits are singled-lined and six are double-lined. For one of the candidates, a nearby but fainter eclipsing binary proved to be the source for the HATNet light curve, due to blending in the HATNet images. Four of the candidates were found to be rotating more rapidly than vsini = 50 km/s and were not pursued further. Thirteen of the candidates showed no significant velocity variation at the level of 0.5 to 1.0 km/s . Seven of these were eventually withdrawn as photometric false alarms based on an independent reanalysis using more sophisticated tools. Of the remaining six, one was put aside because a close visual companion proved to be a spectroscopic binary, and two were not followed up because the host stars were judged to be too large. Two of the remaining candidates are members of a visual binary, one of which was previously confirmed as the first HATNet transiting planet, HAT-P-1b. In this paper we confirm that the last of this set of candidates is also a a transiting planet, which we designate HAT-P-8b, with mass Mp = 1.52 +/- 0.18/0.16 Mjup, radius Rp = 1.50 +/- 0.08/0.06 Rjup, and photometric period P = 3.076320 +/- 0.000004 days. HAT-P-8b has an inflated radius for its mass, and a large mass for its period. The host star is a solar-metallicity F dwarf, with mass M* = 1.28 +/- 0.04 Msun and Rp = 1.58 +/- 0.08/0.06 Rsun.Comment: 16 pages, 6 figures, 13 table

    A Photometric Survey for Variables and Transits in the Field of Praesepe with KELT

    Full text link
    The Kilodegree Extremely Little Telescope (KELT) project is a small aperture, wide-angle search for planetary transits of solar-type stars. In this paper, we present the results of a commissioning campaign with the KELT telescope to observe the open cluster Praesepe for 34 nights in early 2005. Lightcurves were obtained for 69,337 stars, out of which we identify 58 long period variables and 152 periodic variables. Sixteen of these are previously known as variable, yielding 194 newly discovered variable stars for which we provide properties and lightcurves. We also searched for planetary-like transits, finding four transit candidates. Follow-up observations indicate that two of the candidates are astrophysical false positives, with two candidates remaining as potential planetary transits.Comment: 45 pages, 16 figures. Submitted to AJ. PDF version with full resolution figures located at http://www.astronomy.ohio-state.edu/~pepper/kelt.pd

    Novel use Of Hydroxyurea in an African Region with Malaria (NOHARM): a trial for children with sickle cell anemia

    Get PDF
    Hydroxyurea treatment is recommended for children with sickle cell anemia (SCA) living in high-resource malaria-free regions, but its safety and efficacy in malaria-endemic sub-Saharan Africa, where the greatest sickle-cell burden exists, remain unknown. In vitro studies suggest hydroxyurea could increase malaria severity, and hydroxyurea-associated neutropenia could worsen infections. NOHARM (Novel use Of Hydroxyurea in an African Region with Malaria) was a randomized, double-blinded, placebo-controlled trial conducted in malaria-endemic Uganda, comparing hydroxyurea to placebo at 20 ± 2.5 mg/kg per day for 12 months. The primary outcome was incidence of clinical malaria. Secondary outcomes included SCA-related adverse events (AEs), clinical and laboratory effects, and hematological toxicities. Children received either hydroxyurea (N = 104) or placebo (N = 103). Malaria incidence did not differ between children on hydroxyurea (0.05 episodes per child per year; 95% confidence interval [0.02, 0.13]) vs placebo (0.07 episodes per child per year [0.03, 0.16]); the hydroxyurea/placebo malaria incidence rate ratio was 0.7 ([0.2, 2.7]; P = .61). Time to infection also did not differ significantly between treatment arms. A composite SCA-related clinical outcome (vaso-occlusive painful crisis, dactylitis, acute chest syndrome, splenic sequestration, or blood transfusion) was less frequent with hydroxyurea (45%) than placebo (69%; P = .001). Children receiving hydroxyurea had significantly increased hemoglobin concentration and fetal hemoglobin, with decreased leukocytes and reticulocytes. Serious AEs, sepsis episodes, and dose-limiting toxicities were similar between treatment arms. Three deaths occurred (2 hydroxyurea, 1 placebo, and none from malaria). Hydroxyurea treatment appears safe for children with SCA living in malaria-endemic sub-Saharan Africa, without increased severe malaria, infections, or AEs. Hydroxyurea provides SCA-related laboratory and clinical efficacy, but optimal dosing and monitoring regimens for Africa remain undefined. This trial was registered at www.clinicaltrials.gov as #NCT01976416
    corecore