2,741 research outputs found
Towards evidence-based policy: how can collaboration maximise the impact of research on policy?
The effect of egg turning and fertility upon the potassium concentration of the albumen and yolk of the Japanese quail
Hydrodynamic instability in warped astrophysical discs
Warped astrophysical discs are usually treated as laminar viscous flows,
which have anomalous properties when the disc is nearly Keplerian and the
viscosity is small: fast horizontal shearing motions and large torques are
generated, which cause the warp to evolve rapidly, in some cases at a rate that
is inversely proportional to the viscosity. However, these flows are often
subject to a linear hydrodynamic instability, which may produce small-scale
turbulence and modify the large-scale dynamics of the disc. We use a warped
shearing sheet to compute the oscillatory laminar flows in a warped disc and to
analyse their linear stability by the Floquet method. We find widespread
hydrodynamic instability deriving from the parametric resonance of inertial
waves. Even very small, unobservable warps in nearly Keplerian discs of low
viscosity can be expected to generate hydrodynamic turbulence, or at least wave
activity, by this mechanism.Comment: 17 pages, 7 figures, revised version, to be published in MNRA
Viscous overstability and eccentricity evolution in three-dimensional gaseous discs
We investigate the growth or decay rate of the fundamental mode of even
symmetry in a viscous accretion disc. This mode occurs in eccentric discs and
is known to be potentially overstable. We determine the vertical structure of
the disc and its modes, treating radiative energy transport in the diffusion
approximation. In the limit of very long radial wavelength, an analytical
criterion for viscous overstability is obtained, which involves the effective
shear and bulk viscosity, the adiabatic exponent and the opacity law of the
disc. This differs from the prediction of a two-dimensional model. On shorter
wavelengths (a few times the disc thickness), the criterion for overstability
is more difficult to satisfy because of the different vertical structure of the
mode. In a low-viscosity disc a third regime of intermediate wavelengths
appears, in which the overstability is suppressed as the horizontal velocity
perturbations develop significant vertical shear. We suggest that this effect
determines the damping rate of eccentricity in protoplanetary discs, for which
the long-wavelength analysis is inapplicable and overstability is unlikely to
occur on any scale. In thinner accretion discs and in decretion discs around Be
stars overstability may occur only on the longest wavelengths, leading to the
preferential excitation of global eccentric modes.Comment: 11 pages, 8 figure
- …
