343 research outputs found

    From Rotating Atomic Rings to Quantum Hall States

    Get PDF
    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic strongly correlated quantum Hall regime. The routes followed so far essentially rely on thermodynamics, i.e. imposing the proper Hamiltonian and cooling the system towards its ground state. In rapidly rotating 2D harmonic traps the role of the transverse magnetic field is played by the angular velocity. For particle numbers significantly larger than unity, the required angular momentum is very large and it can be obtained only for spinning frequencies extremely near to the deconfinement limit; consequently, the required control on experimental parameters turns out to be far too stringent. Here we propose to follow instead a dynamic path starting from the gas confined in a rotating ring. The large moment of inertia of the fluid facilitates the access to states with a large angular momentum, corresponding to a giant vortex. The initial ring-shaped trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum Hall regime. We provide clear numerical evidence that for a relatively broad range of initial angular frequencies, the giant vortex state is adiabatically connected to the bosonic ν=1/2\nu=1/2 Laughlin state, and we discuss the scaling to many particles.Comment: 9 pages, 5 figure

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Moderate and heavy metabolic stress interval training improve arterial stiffness and heart rate dynamics in humans

    Get PDF
    Traditional continuous aerobic exercise training attenuates age-related increases of arterial stiffness, however, training studies have not determined whether metabolic stress impacts these favourable effects. Twenty untrained healthy participants (n = 11 heavy metabolic stress interval training, n = 9 moderate metabolic stress interval training) completed 6 weeks of moderate or heavy intensity interval training matched for total work and exercise duration. Carotid artery stiffness, blood pressure contour analysis, and linear and non-linear heart rate variability were assessed before and following training. Overall, carotid arterial stiffness was reduced (p  0.05). This study demonstrates the effectiveness of interval training at improving arterial stiffness and autonomic function, however, the metabolic stress was not a mediator of this effect. In addition, these changes were also independent of improvements in aerobic capacity, which were only induced by training that involved a high metabolic stress

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The effects of upper and lower limb exercise on the microvascular reactivity in limited cutaneous systemic sclerosis patients

    Get PDF
    Background: Aerobic exercise in general and high intensity interval training (HIIT) specifically is known to improve vascular function in a range of clinical conditions. HIIT in particular has demonstrated improvements in clinical outcomes, in conditions that have a strong macroangiopathic component. Nevertheless, the effect of HIIT on microcirculation in systemic sclerosis (SSc) patients is yet to be investigated. Therefore, the purpose of the study was to compare the effects of two HIIT protocols (cycle and arm cranking) on the microcirculation of the digital area in SSc patients. Methods: Thirty four limited cutaneous SSc patients (65.3 ± 11.6 years old) were randomly allocated in three groups (cycling, arm cranking and control group). The exercise groups underwent a twelve-week exercise program twice per week. All patients performed the baseline and post-exercise intervention measurements where physical fitness, functional ability, transcutaneous oxygen tension (ΔtcpO2), body composition and quality of life were assessed. Endothelial-dependent as well as-independent vasodilation were assessed in the middle and index fingers using LDF and incremental doses of acetylcholine (ACh) and sodium nitroprusside (SNP). Cutaneous flux data were expressed as cutaneous vascular conductance (CVC). Results: Peak oxygen uptake increased in both exercise groups (p<0.01, d=1.36). ΔtcpO2 demonstrated an increase in the arm cranking group only, with a large effect, but not found statistically significant,(p=0.59, d=0.93). Endothelial-dependent vasodilation improvement was greater in the arm cranking (p<0.05, d=1.07) in comparison to other groups. Both exercise groups improved life satisfaction (p<0.001) as well as reduced discomfort and pain due to Raynaud's phenomenon (p<0.05). Arm cranking seems to be the preferred mode of exercise for study participants as compared to cycling (p<0.05). No changes were observed in the body composition or the functional ability in both exercise groups. Conclusion: Our results suggest that arm cranking has the potential to improve the microvascular endothelial function in SSc patients. Also notably, our recommended training dose (e.g., a 12-week HIIT program, twice per week), appeared to be sufficient and tolerable for this population. Future research should focus on exploring the feasibility of a combined exercise such as aerobic and resistance training by assessing individual's experience and the quality of life in SSc patients. Trial registration: ClinicalTrials.gov (NCT number): NCT03058887, February 23, 2017, https://clinicaltrials.gov/ct2/show/NCT03058887?term=NCT03058887&rank=1 Key words: High intensity interval training, vascular function, quality of lif

    Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: speed endurance runs versus small-sided game training.

    Get PDF
    PURPOSE: To examine the skeletal muscle and performance responses across two different exercise training modalities which are highly applied in soccer training. METHODS: Using an RCT design, 39 well-trained male soccer players were randomized into either a speed endurance training (SET; n = 21) or a small-sided game group (SSG; n = 18). Over 4 weeks, thrice weekly, SET performed 6-10 × 30-s all-out runs with 3-min recovery, while SSG completed 2 × 7-9-min small-sided games with 2-min recovery. Muscle biopsies were obtained from m. vastus lateralis pre and post intervention and were subsequently analysed for metabolic enzyme activity and muscle protein expression. Moreover, the Yo-Yo Intermittent Recovery level 2 test (Yo-Yo IR2) was performed. RESULTS: Muscle CS maximal activity increased (P < 0.05) by 18% in SET only, demonstrating larger (P < 0.05) improvement than SSG, while HAD activity increased (P < 0.05) by 24% in both groups. Na(+)-K(+) ATPase α1 subunit protein expression increased (P < 0.05) in SET and SSG (19 and 37%, respectively), while MCT4 protein expression rose (P < 0.05) by 30 and 61% in SET and SSG, respectively. SOD2 protein expression increased (P < 0.05) by 28 and 37% in SET and SSG, respectively, while GLUT-4 protein expression increased (P < 0.05) by 40% in SSG only. Finally, SET displayed 39% greater improvement (P < 0.05) in Yo-Yo IR2 performance than SSG. CONCLUSION: Speed endurance training improved muscle oxidative capacity and exercise performance more pronouncedly than small-sided game training, but comparable responses were in muscle ion transporters and antioxidative capacity in well-trained male soccer players

    Theory of disk accretion onto supermassive black holes

    Full text link
    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres

    Coding Efficiency of Fly Motion Processing Is Set by Firing Rate, Not Firing Precision

    Get PDF
    To comprehend the principles underlying sensory information processing, it is important to understand how the nervous system deals with various sources of perturbation. Here, we analyze how the representation of motion information in the fly's nervous system changes with temperature and luminance. Although these two environmental variables have a considerable impact on the fly's nervous system, they do not impede the fly to behave suitably over a wide range of conditions. We recorded responses from a motion-sensitive neuron, the H1-cell, to a time-varying stimulus at many different combinations of temperature and luminance. We found that the mean firing rate, but not firing precision, changes with temperature, while both were affected by mean luminance. Because we also found that information rate and coding efficiency are mainly set by the mean firing rate, our results suggest that, in the face of environmental perturbations, the coding efficiency is improved by an increase in the mean firing rate, rather than by an increased firing precision

    Regional changes in reactive hyperemic blood flow during exercise training: time-course adaptations

    Get PDF
    BACKGROUND: Few studies have examined the time-course of localized exercise training on regional blood flow in humans. The study examined the influence of handgrip exercise training on forearm reactive hyperemic blood flow and vascular resistance in apparently healthy men. METHODS: Forearm blood flow and vascular resistance were evaluated, in 17 individuals [Age: 22.6 ± 3.5], in both arms, at rest and following 5 minutes of arterial occlusion, using strain gauge plethysmography, prior to training (V1) and every week thereafter (V2-5) for 4 weeks. Handgrip exercise was performed in the non-dominant arm 5 d/wk for 20 minutes at 60% of maximum voluntary contraction, while the dominant arm served as control. RESULTS: Resting HR, BP, and forearm blood flow and vascular resistance were not altered with training. The trained arm handgrip strength and circumference increased by 14.5% (p = 0.014) and 1.56% (p = 0.03), respectively. ANOVA tests revealed an arms by visit interaction for the trained arm for reactive hyperemic blood flow (p = 0.02) and vascular resistance (p = 0.009). Post-hoc comparison demonstrated increased reactive hyperemic blood flow (p = 0.0013), and decreased post-occlusion vascular resistance (p = 0.05), following the 1(st )week of training, with no significant changes in subsequent visits. CONCLUSION: The results indicate unilateral improvements in forearm reactive hyperemic blood flow and vascular resistance following 1 week of handgrip exercise training and leveled off for the rest of the study
    corecore