423 research outputs found
Unified Quantum Mechanical Picture for Confined Spinons in Dimerized and Frustrated Spin S=1/2 Chains
A quantum mechanical picture is presented to describe the behavior of
confined spinons in a variety of S=1/2 chains. The confinement is due to
dimerization and frustration and it manifests itselfas a nonlinear potential
V(x)~ |x|^b, centered at chain ends (b <= 1) or produced by modulation kinks (b
> 1). The calculation extends to weak or zero frustration some previous ideas
valid for spinons in strongly frustrated spin chains. The local magnetization
patterns of the confined spinons are calculated. A (minimum) enhancement of the
local moments of about 11/3 over a single S=1/2 is found. Estimates for
excitation energies and binding lengths are obtained.Comment: 11.5 pages, Revtex, 10 figures included, accepted by Euro. Phys. J. B
final version including some changes, several references adde
Local Enhancement of Antiferromagnetic Correlations by Nonmagnetic Impurities
The local enhancement of antiferromagnetic correlations near vacancies
observed in a variety of spin systems is analyzed in a single framework.
Variational calculations suggest that the resonating-valence-bond character of
the spin correlations at short distances is responsible for the enhancement.
Numerical results for uniform spin chains, with and without frustration,
dimerized chains, ladders, and two dimensional clusters are in agreement with
our conjecture. This short distance phenomenon occurs independently of the long
distance behavior of the spin correlations in the undoped system. Experimental
predictions for a variety of compounds are briefly discussed.Comment: 5 pages, 4 ps figures in the text, to appear on Phys. Rev. Lett.
(received on 10/16/96
Doping effects in low dimensional antiferromagnets
The study of impurities in low dimensional antiferromagnets has been a very
active field in magnetism ever since the discovery of high temperature
superconductivity. One of the most dramatic effects is the appearance of large
Knight shifts in a long range around non-magnetic impurities in an
antiferromagnetic background. The dependence of the Knight shifts on distance
and temperature visualizes the correlations in the system. In this work we
present the results for Knight shifts around a single vacancy in the one and
two dimensional Heisenberg model.Comment: 4 pages, 7 figures. The latest version can be found at
http://www.physik.uni-kl.de/eggert/papers/law3m.pd
The antiferromagnetic order in an F-AF random alternating quantum spin chain : (CH_3)_2 CHNH_3 Cu(Cl_x Br_{1-x})_3
A possibility of the uniform antiferromagnetic order is pointed out in an
S=1/2 ferromagnetic (F) - antiferromagnetic (AF) random alternating Heisenberg
quantum spin chain compound: (CH_3)_2 CHNH_3 Cu(Cl_x Br_{1-x})_3. The system
possesses the bond alternation of strong random bonds that take +/- 2J and weak
uniform AF bonds of -J. In the pure concentration limits, the model reduces to
the AF-AF alternation chain at x=0 and to the F-AF alternation chain at x=1.
The nonequilibrium relaxation of large-scale quantum Monte Carlo simulations
exhibits critical behaviors of the uniform AF order in the intermediate
concentration region, which explains the experimental observation of the
magnetic phase transition. The present results suggest that the uniform AF
order may survive even in the presence of the randomly located ferromagnetic
bonds.Comment: 4 pages, 3 figure
Possible Localized Modes in the Uniform Quantum Heisenberg Chains of Sr2CuO3
A model of mobile-bond defects is tentatively proposed to analyze the
"anomalies" observed on the NMR spectrum of the quantum Heisenberg chains of
Sr2CuO3. A bond-defect is a local change in the exchange coupling. It results
in a local alternating magnetization (LAM), which when the defect moves,
creates a flipping process of the local field seen by each nuclear spin. At low
temperature, when the overlap of the LAM becomes large, the defects form a
periodic structure, which extends over almost all the chains. In that regime,
the density of bond-defects decreases linearly with T.Comment: 4 pages + 3 figures. To appear in Physical Review
Impurity-induced spin polarization and NMR line broadening in underdoped cuprates
We present a theory of magnetic (S=1) Ni and nonmagnetic Zn impurities in
underdoped cuprates. Both types of impurities are shown to induce S=1/2 moments
on Cu sites in the proximity of the impurity, a process which is intimately
related to the spin gap phenomenon in cuprates. Below a characteristic Kondo
temperature, the Ni spin is partially screened by the Cu moments, resulting in
an effective impurity spin S=1/2. We further analyze the
Ruderman-Kittel-Kasiya-Yosida-type response of planar Cu spins to a
polarization of the effective impurity moments and derive expressions for the
corresponding ^{17}O NMR line broadening. The peculiar aspects of recent
experimental NMR data can be traced back to different spatial characteristics
of Ni and Zn moments as well as to an inherent temperature dependence of local
antiferromagnetic correlations.Comment: PRB B1 01June9
Localization length of a soliton from a non-magnetic impurity in a general double-spin-chain model
A localization length of a free-spin soliton from a non-magnetic impurity is
deduced in a general double-spin-chain model ( model). We have
solved a variational problem which employs the nearest-neighbor singlet-dimer
basis. The wave function of a soliton is expressed by the Airy function, and
the localization length is found to obey a power law of the
dimerization with an exponent -1/3; .
This explains why NaV_2O_5 does not show the antiferromagnetic order, while
CuGeO_3 does by impurity doping. When the gap exists by the bond-dimerization,
a soliton is localized and no order is expected. Contrary, there is a
possibility of the order when the gap is mainly due to frustration.Comment: 4 pages, REVTeX, Figures are in eps-file
Excitation Spectra and Thermodynamic Response of Segmented Heisenberg Spin Chains
The spectral and thermodynamic response of segmented quantum spin chains is
analyzed using a combination of numerical techniques and finite-size scaling
arguments. Various distributions of segment lengths are considered, including
the two extreme cases of quenched and annealed averages. As the impurity
concentration is increased, it is found that (i) the integrated spectral weight
is rapidly reduced, (ii) a pseudo-gap feature opens up at small frequencies,
and (iii) at larger frequencies a discrete peak structure emerges, dominated by
the contributions of the smallest cluster segments. The corresponding
low-temperature thermodynamic response has a divergent contribution due to the
odd-site clusters and a sub-dominant exponentially activated component due to
the even-site segments whose finite-size gap is responsible for the spectral
weight suppression at small frequencies. Based on simple scaling arguments,
approximate low-temperature expressions are derived for the uniform
susceptibility and the heat capacity. These are shown to be in good agreement
with numerical solutions of the Bethe ansatz equations for ensembles of
open-end chains.Comment: RevTex, 9 pages with 6 figure
Local magnetic structure due to inhomogeneity of interaction in S=1/2 antiferromagnetic chain
We study the magnetic properties of antiferromagnetic Heisenberg
chains with inhomogeneity of interaction. Using a quantum Monte Carlo method
and an exact diagonalization method, we study bond-impurity effect in the
uniform chain and also in the bond-alternating chain. Here `bond
impurity' means a bond with strength different from those in the bulk or a
defect in the alternating order. Local magnetic structures induced by bond
impurities are investigated both in the ground state and at finite
temperatures, calculating the local magnetization, the local susceptibility and
the local field susceptibility. We also investigate the force acting between
bond impurities and find the force generally attractive.Comment: 15pages, 34figure
Order by disorder from non-magnetic impurities in a two-dimensional quantum spin liquid
We consider doping of non-magnetic impurities in the spin-1/2, 1/5-depleted
square lattice. This structure, whose undoped phase diagram offers both
magnetically ordered and spin-liquid ground states, is realized physically in
CaV_4O_9. Doping into the ordered phase results in a progressive loss of order,
which becomes complete at the percolation threshold. By contrast, non-magnetic
impurities introduced in the spin liquids create a phase of weak but
long-ranged antiferromagnetic order coexisting with the gapped state. The
latter may be viewed as a true order-by-disorder phenomenon. We study the phase
diagram of the doped system by computing the static susceptibility and
staggered magnetization using a stochastic series-expansion quantum Monte Carlo
technique.Comment: 4 pages, 5 figure
- …
