3,687 research outputs found
Turbulent transport modelling of separating and reattaching shear flows
The improvement of capabilities for computer simulation of turbulent recirculating flows was investigated. Attention has been limited to two dimensional flows and principally to statistically stationary motion. Improvement of turbulence modeling explored the treatment of the near wall sublayer and of the exterior fully turbulent region, working within the framework of turbulence closures requiring the solution of transport equations for the turbulence energy and its dissipation rate. The work on the numerical procedure, based on the Gosman-Pun program TEACH, addressed the problems of incorporating the turbulence model as well as the extension to time dependent flows, the incorporation of a third order approximation of convective transport, and the treatment of non-orthogonal boundaries
Microbiological indicators of water quality in submerged karst caves of Wakulla Springs
22 slides in Powerpoint presentation
Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program
A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow
Effect of width and temperature of a vertical parallel plate channel on the transition of the developing thermal boundary layer
Numerical simulations are performed to study the transition of the development of the thermal boundary layer of air along an isothermal heated plate in a large channel which is bounded by an adiabatic plate. In particular, the aim is to investigate the effects of the channel width (b) on the transition of the flow under various plate temperatures. Three different RANS based turbulent k–ε models namely standard, RNG and Realizable with an enhanced wall function are employed in the simulations. The channel width was varied from 0.04 m to 0.45 m and the numerical results of the maximum values of the flow velocity, turbulent kinetic energy were recorded along the vertical axis to examine the critical distance of the developing flow. The results show that the transition delays when the width is increased from 0.04 m to 0.08 m and particularly, the critical distance at b = 0.08 m reaches its maximum with the Grashof number of 2.8 × 1010. However, the critical distance drops when b is increased further from 0.08 m to 0.45 m, indicating an early transition of the flow. The transition remains unaffected by the adiabatic plate when b is greater than 0.45 m. Comparisons of selected numerical results are made with available experimental data of turbulent flow and a satisfied agreement is received
Simulation d'écoulements transitionnels et turbulents en cavités rotor-stator avec transferts de chaleur.
National audienceOn étudie les écoulements non isothermes confinés entre un disque tournant (rotor) et un disque fixe (stator) par simulation numérique directe (DNS) dans le cas d'un écoulement de transition et par modélisation de la turbulence (Reynolds Stress Model noté RSM) pour des forts nombres de Reynolds. Sous l'approximation de Boussinesq, les résultats de la DNS montrent que les effets de variation de densité sont faibles. Les prévisions du modèle RSM sont ensuite comparées à des données disponibles dans la littérature et étendus pour une large gamme de nombre de Prandtl en conservant la densité constante
Phenomenology of Wall Bounded Newtonian Turbulence
We construct a simple analytic model for wall-bounded turbulence, containing
only four adjustable parameters. Two of these parameters characterize the
viscous dissipation of the components of the Reynolds stress-tensor and other
two parameters characterize their nonlinear relaxation. The model offers an
analytic description of the profiles of the mean velocity and the correlation
functions of velocity fluctuations in the entire boundary region, from the
viscous sub-layer, through the buffer layer and further into the log-layer. As
a first approximation, we employ the traditional return-to-isotropy hypothesis,
which yields a very simple distribution of the turbulent kinetic energy between
the velocity components in the log-layer: the streamwise component contains a
half of the total energy whereas the wall-normal and the cross-stream
components contain a quarter each. In addition, the model predicts a very
simple relation between the von-K\'arm\'an slope and the turbulent
velocity in the log-law region (in wall units): . These
predictions are in excellent agreement with DNS data and with recent laboratory
experiments.Comment: 15 pages, 11 figs, included, PRE, submitte
Two-fluid model of the truncated Euler Equations
A phenomenological two-fluid model of the (time-reversible)
spectrally-truncated 3D Euler equation is proposed. The thermalized small
scales are first shown to be quasi-normal. The effective viscosity and thermal
diffusion are then determined, using EDQNM closure and Monte-Carlo numerical
computations. Finally, the model is validated by comparing its dynamics with
that of the original truncated Euler equation
Simulation of multi-deck medium temperature display cabinets with the integration of CFD and cooling coil models
This is the post-print version of the final paper published in Applied Energy. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.In this paper, the model for the multi-deck medium temperature display cabinets is developed with the integration of CFD and cooling coil sub-models. The distributed method is used to develop the cooling coil model with the airside inputs from the outputs of the CFD model. Inversely, the airside outputs from the cooling coil model are used to update the boundary conditions of the CFD model. To validate this cabinet model, a multi-deck medium temperature display cabinet refrigerated with a secondary refrigerant cooling coil was selected as a prototype and mounted in an air conditioned chamber. Extensive tests were conducted at constant space air temperature and varied relative humilities. The cabinet model has been validated by comparing with the test results for the parameters of air at different locations of the flow path, and temperatures of refrigerant and food product, etc. The validated model is therefore used to explore and analyse the cabinet performance and control strategies at various operating and design conditions.DEFR
Computational Fluid Dynamic Studies of Vortex Amplifier Design for the Nuclear Industry—II. Transient Conditions
In this paper computational fluid dynamics (CFD) techniques have been used to investigate the effect of changes to the geometry of a vortex amplifier (VXA) in the context of glovebox operations in the nuclear industry. These investigations were required because of anomalous behavior identified when, for operational reasons, a long-established VXA design was reduced in scale. The study simulates the transient aspects of two effects: back-flow into the glovebox through the VXA supply ports, and the precessing vortex core in the amplifier outlet. A temporal convergence error study indicates that there is little to be gained from reducing the time step duration below 0.1 ms. Based upon this criterion, the results of the simulation show that the percentage imbalance in the domain was well below the required figure of 1, and imbalances for momentum in all three axes were all below measurable values. Furthermore, there was no conclusive evidence of periodicity in the flow perturbations at the glovebox boundary, although good evidence of periodicity in the device itself and in the outlet pipe was seen. Under all conditions the modified geometry performed better than the control geometry with regard to aggregate reversed supply flow. The control geometry exhibited aggregate nonaxisymmetric supply port back-flow for almost all of the simulated period, unlike the alternative geometry for which the flow through the supply ports was positive, although still nonaxisymmetric, for most of the period. The simulations show how transient flow structures in the supply ports can cause flow to be reversed in individual ports, whereas aggregate flow through the device remains positive. Similar to the supply ports, flow through the outlet of the VXA under high swirl conditions is also nonaxisymmetric. A time-dependent reverse flow region was observed in both the outlet and the diffuser. It is possible that small vortices in the outlet, coupled with the larger vortex in the chamber, are responsible for the oscillations, which cause the shift in the axis of the precessing vortex core (and ultimately in the variations of mass flow in the individual supply ports). Field trials show that the modified geometry reduces the back-flow of oxygen into the glovebox by as much as 78. At purge rates of 0.65 m 3h the modified geometry was found to be less effective, the rate of leakage from the VXA increasing by 16-20. Despite this reduced performance, leakage from the modified geometry was still 63 less than the control geometry. © 2012 American Society of Mechanical Engineers
- …
