1,146 research outputs found
Long-term safety and efficacy of Omnitrope\uae, a somatropin biosimilar, in children requiring growth hormone treatment: Italian interim analysis of the PATRO Children study
Background: PATRO Children is an ongoing observational, longitudinal, non-interventional, global post-marketing surveillance study, which is investigating the long-term safety and effectiveness of Omnitrope\uae, a somatropin biosimilar to Genotropin\uae, in children with growth disturbances. The primary endpoint of PATRO Children is long-term safety and the secondary endpoint is effectiveness, which is assessed by analysing auxological data such as height (HSDS) and height velocity (HVSDS) standard deviation scores. Here, we report the data from the Italian interim analysis of PATRO Children data up to August 2015. Methods: PATRO Children is enrolling children who are diagnosed with conditions of short stature requiring GH treatment and are receiving Omnitrope\uae. Adverse events (AEs) are assessed in all Omnitrope\uae-treated patients. Height is evaluated yearly to near-adult (final) height, and is herein reported as HSDS; height velocity is also assessed and reported as a standard deviation score (HVSDS). Results: Up to August 2015, a total of 186 patients (mean age 10.2 years, 57.5 % males) were enrolled :156 [84 %] had growth hormone deficiency, 12 [6.5 %] were born small for gestational age, seven [3.8 %] had Prader-Willi syndrome, one [0.5 %] had Turner syndrome and one [0.5 %] had chronic renal insufficiency; seven [3.8 %] patients had other indication profiles. The mean treatment duration with Omnitrope\uae was 28.1 \ub1 19.1 months. AEs were reported in 35.6 % of patients and included headache, pyrexia, arthralgia, abdominal pain, leg and/or arm pain and increased blood creatine phosphokinase. Two serious AEs in two patients were thought to be drug-related; one patient experienced a minimal increase in a known residual craniopharyngioma, and another a gait disturbance with worsening of walking difficulties. Similar to investigational studies, Omnitrope\uae treatment was associated with improvements in both HSDS and HVSDS. Conclusions: Omnitrope\uae appears to be well tolerated and effective for the treatment of a wide range of paediatric indications, which is consistent with the outcomes from controlled clinical trials. These results need to be interpreted with caution until the data from the global PATRO Children study are available
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Different interactions of fungi with toxic metals
Many papers have reported the uptake and translocation of toxic metals and radionuclides to fruit bodies of edible fungi and also to mycelia biomass. Our aim is to study how to reduce the metal phytotoxicity by mychorrizal fungi pointing at land reclamation and at the detoxification of metal/radionuclides-containing industrial effluents
Profiling Critical Cancer Gene Mutations in Clinical Tumor Samples
Background: Detection of critical cancer gene mutations in clinical tumor specimens may predict patient outcomes and inform treatment options; however, high-throughput mutation profiling remains underdeveloped as a diagnostic approach. We report the implementation of a genotyping and validation algorithm that enables robust tumor mutation profiling in the clinical setting. Methodology: We developed and implemented an optimized mutation profiling platform (“OncoMap”) to interrogate ∼400 mutations in 33 known oncogenes and tumor suppressors, many of which are known to predict response or resistance to targeted therapies. The performance of OncoMap was analyzed using DNA derived from both frozen and FFPE clinical material in a diverse set of cancer types. A subsequent in-depth analysis was conducted on histologically and clinically annotated pediatric gliomas. The sensitivity and specificity of OncoMap were 93.8% and 100% in fresh frozen tissue; and 89.3% and 99.4% in FFPE-derived DNA. We detected known mutations at the expected frequencies in common cancers, as well as novel mutations in adult and pediatric cancers that are likely to predict heightened response or resistance to existing or developmental cancer therapies. OncoMap profiles also support a new molecular stratification of pediatric low-grade gliomas based on BRAF mutations that may have immediate clinical impact. Conclusions: Our results demonstrate the clinical feasibility of high-throughput mutation profiling to query a large panel of “actionable” cancer gene mutations. In the future, this type of approach may be incorporated into both cancer epidemiologic studies and clinical decision making to specify the use of many targeted anticancer agents
Different seminal ejaculated fractions in artificial insemination condition the protein cargo of oviductal and uterine extracellular vesicles in pig
[EN] The seminal plasma (SP) is the liquid component of semen that facilitates sperm transport through the female genital tract. SP modulates the activity of the ovary, oviductal environment and uterine function during the periovulatory and early pregnancy period. Extracellular vesicles (EVs) secreted in the oviduct (oEVs) and uterus (uEVs) have been shown to influence the expression of endometrial genes that regulate fertilization and early embryo development. In some species, semen is composed of well-separated fractions that vary in concentration of spermatozoa and SP composition and volume. This study aimed to investigate the impact of different accumulative fractions of the porcine ejaculate (F1, composed of the sperm-rich fraction, SRF; F2, composed of F1 plus the intermediate fraction; F3, composed of F2 plus the post-SRF) on oEVs and uEVs protein cargo. Six days after the onset of estrus, we determined the oEVs and uEVs size and protein concentration in pregnant sows by artificial insemination (AI-sows) and in non-inseminated sows as control (C-sows). We also identified the main proteins in oEVs and uEVs, in AI-F1, AI-F2, AI-F3, and C-sows. Our results indicated that although the size of EVs is similar between AI- and C-sows, the protein concentration of both oEVs and uEVs was significantly lower in AI-sows (p < 0.05). Proteomic analysis identified 38 unique proteins in oEVs from AI-sows, mainly involved in protein stabilization, glycolytic and carbohydrate processes. The uEVs from AI-sows showed the presence of 43 unique proteins, including already-known fertility-related proteins (EZR, HSPAA901, PDS). We also demonstrated that the protein composition of oEVs and uEVs differed depending on the seminal fraction(s) inseminated (F1, F2, or F3). In conclusion, we found specific protein cargo in oEVs and uEVs according to the type of semen fraction the sow was inseminated with and whose functions these specific EVs proteins are closely associated with reproductive processesSIThis research was supported by the Seneca Foundation (21656/ 21), Ministry of Science and Innovation (PID2019-106380RBI00/ AEI/10.13039/501100011033) and European Union Next- Generation EU/PRTR (PDC2022-133589-I00
Bitter Taste Receptors and Endocrine Disruptors: Cellular and Molecular Insights from an In Vitro Model of Human Granulosa Cells
Endocrine disrupting chemicals (EDCs) are compounds that interfere with the synthesis, transport and binding action of hormones responsible for reproduction and homeostasis. Some EDCs compounds are activators of Taste bitter Receptors, a subclass of taste receptors expressed in many extraoral locations, including sperm and follicular somatic cells. This makes TAS2Rs attractive molecules to study and investigate to shed light on the effect of EDCs on female reproduction and fertility. This study aims to assess the effect of selected EDCs [namely Biochanin A (BCA), caffeine, Daidzein, Genistein and Isoflavone] on hGL5, an immortalized cell line exhibiting characteristics coherent with primary follicular granulosa cells. After demonstrating that this model expresses all the TAS2Rs (TAS2R3, TAS2R4, TAS2R14, TAS2R19, TAS2R43) specifically expressed by the primary human granulosa cells, we demonstrated that BCA and caffeine significantly affect mitochondrial footprint and intracellular lipid content, indicating their contribution in steroidogenesis. Our results showed that bitter taste receptors may be involved in steroidogenesis, thus suggesting an appealing mechanism by which these compounds affect the female reproductive system
Using Machine Learning to Characterize Atrial Fibrotic Substrate from Intracardiac Signals with a Hybrid in silico and in vivo Dataset
[EN] In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. However, it remains an open challenge to find fibrotic areas and to differentiate their density and transmurality. This study aims to identify the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated cardiac electrograms, combined with a generalized model of clinical noise, reproduce clinically measured signals. Our hybrid dataset approach combines in silico and clinical electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate. This approach captures different in vivo dynamics of the electrical propagation reflected on healthy electrogram morphology and synergistically combines it with synthetic fibrotic electrograms from in silico experiments. The machine learning algorithm was tested on five patients and compared against clinical voltage maps as a proof of concept, distinguishing non-fibrotic from fibrotic tissue and characterizing the patient's fibrotic tissue in terms of density and transmurality. The proposed approach can be used to overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation targeting fibrotic areas.We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through DO637/22-3, LO2093/1-1 and LU 2294/1-1, by the European Union's Horizon 2020 programme (grant agreement No.766082, MY-ATRIA project), by the KIT-Publication Fund of the Karlsruhe Institute of Technology and by the Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2017-2020 from the Ministerio de Ciencia e Innovacion y Universidades (PID2019-104356RB-C41/AEI/10.13039/501100011033)Sánchez Arciniegas, JP.; Luongo, G.; Nothstein, M.; Unger, LA.; Saiz Rodríguez, FJ.; Trenor Gomis, BA.; Luik, A.... (2021). Using Machine Learning to Characterize Atrial Fibrotic Substrate from Intracardiac Signals with a Hybrid in silico and in vivo Dataset. Frontiers in Physiology. 12:1-15. https://doi.org/10.3389/fphys.2021.699291S1151
Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device
We demonstrate tunable Schottky barrier height and record photo-responsivity
in a new-concept device made of a single-layer CVD graphene transferred onto a
matrix of nanotips patterned on n-type Si wafer. The original layout, where
nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to
the electric field of the Si substrate, which acts both as diode cathode and
transistor gate, results in a two-terminal barristor with single-bias control
of the Schottky barrier. The nanotip patterning favors light absorption, and
the enhancement of the electric field at the tip apex improves photo-charge
separation and enables internal gain by impact ionization. These features
render the device a photodetector with responsivity (3 A/W for white LED light
at 3 mW/cm2 intensity) almost an order of magnitude higher than commercial
photodiodes. We extensively characterize the voltage and the temperature
dependence of the device parameters and prove that the multi-junction approach
does not add extra-inhomogeneity to the Schottky barrier height distribution.
This work represents a significant advance in the realization of graphene/Si
Schottky devices for optoelectronic applications.Comment: Research paper, 22 pages, 7 figure
In Vitro and In Vivo Effects of Melatonin-Containing Combinations in Human Pancreatic Ductal Adenocarcinoma
Pancreatic ductal adenocarcinoma (PDAC) has poor prognosis and high mortality rates. Therefore, it is necessary to identify new targets and therapeutic strategies to improve the prognosis of patients with PDAC. Integrative therapies are increasingly being used to boost the efficacy of the known anticancer therapeutic approaches. Hence, this study aimed to evaluate the effects of a novel combination of different potential anticancer molecules, melatonin (MLT), cannabidiol (CBD), and oxygen-ozone (O2/O3) to treat PDAC using in vitro and in vivo models of human PDAC. The effect of this combination was investigated in combination with gemcitabine (GEM), the most common chemotherapeutic drug used for PDAC treatment. The combination of MLT + CBD + O2/O3 was more effective than the individual treatments in inhibiting PDAC cell viability and proliferation, inducing cell death, and modulating the RAS pathway protein levels. Moreover, different combinations of treatments reduced tumor mass in the PDAC mouse model, thus promoting the effect of GEM. In conclusion, a mixture of MLT + CBD + O2/O3 could serve as a potential adjuvant therapeutic strategy for PDAC
- …
