4,163 research outputs found
Biofilms in porous media: development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions
In this work, we upscale a pore-scale description of mass transport in a porous medium containing biofilm to develop the relevant Darcy-scale equations. We begin with the pore-scale descriptions of mass transport, interphase mass transfer, and biologically-mediated reactions; these processes are then upscaled using the method of volume averaging to obtain the macroscale mass balance equations. We focus on the case of local mass equilibrium conditions where the averaged concentrations in the fluid and biological phases can be assumed to be proportional and for which a one-equation macroscopic model may be developed. We predict the effective dispersion tensor by a closure scheme that is solved for the cases of both simple and complex unit cells. The domain of validity of the approach is clearly identified, both theoretically and numerically, and unitless groupings indicating the domain of validity are reported
Penetration and cratering experiments of graphite by 0.5-mm diameter steel spheres at various impact velocities
Cratering experiments have been conducted with 0.5-mm diameter AISI 52100 steel spherical projectiles and 30-mm diameter, 15-mm long graphite targets. The latter were made of a commercial grade of polycrystalline and porous graphite named EDM3 whose behavior is known as macroscopically isotropic. A two-stage light-gas gun launched the steel projectiles at velocities between 1.1 and 4.5 km s 1. In most cases, post-mortem tomographies revealed that the projectile was trapped, fragmented or not, inside the target. It showed that the apparent crater size and depth increase with the impact velocity. This is also the case of the crater volume which appears to follow a power law significantly different from those constructed in previous works for similar impact conditions and materials. Meanwhile, the projectile depth of penetration starts to decrease at velocities beyond 2.2 km s 1. This is firstly because of its plastic deformation and then, beyond 3.2 km s 1, because of its fragmentation. In addition to these three regimes of penetration behavior already described by a few authors, we suggest a fourth regime in which the projectile melting plays a significant role at velocities above 4.1 km s 1. A discussion of these four regimes is provided and indicates that each phenomenon may account for the local evolution of the depth of penetration
X-ray microanalysis in STEM of short-term physico-chemical reactions at bioactive glass particles / biological fluids interface. Determination of O/Si atomic ratios
Short-term physico-chemical reactions at the interface between bioactive
glass particles and biological fluids are studied and we focus our attention on
the measurements of O/Si atomic ratio. The studied bioactive glass is in the
SiO2-Na2O-CaO-P2O5-K2O-Al2O3-MgO system. The elemental analysis is performed at
the submicrometer scale by STEM associated with EDXS and EELS. We previously
developed an EDXS quantification method based on the ratio method and taking
into account local absorption corrections. In this way, we use EELS data to
determine, by an iterative process, the local mass thickness which is an
essential parameter to correct absorption in EDXS spectra. After different
delays of immersion of bioactive glass particles in a simulated biological
solution, results show the formation of different surface layers at the
bioactive glass periphery. Before one day of immersion, we observe the presence
of an already shown (Si,O,Al) rich layer at the periphery. In this paper, we
demonstrate that a thin electron dense (Si,O) layer is formed on top of the
(Si,O,Al) layer. In this (Si,O) layer, depleted in aluminium, we point out an
increase of oxygen weight concentration which can be interpreted by the
presence of Si(OH)4 groups, that permit the formation of a (Ca,P) layer.
Aluminium plays a role in the glass solubility and may inhibit apatite
nucleation. After the beginning of the (Ca,P) layer formation, the size of the
electron dense (Si,O) layer decreases and tends to disappear. After two days of
immersion, the (Ca,P) layer grows in thickness and leads to apatite
precipitatio
Characterization and diversity of the market-gardening production systems and their interactions with urban and peri-urban environment in Southern-Benin, West Africa
The market-gardening production plays an important role in contribution to food availability. However this activity is limited by constraints and also generates harmful effects on health and environment. Thus to ensure the sustainability of this activity is a great challenge. A survey on market-gardening farms management was carried out from 2009 to 2010 on 197 farmers in production site of Cotonou, Sèmè-kpodji and Ouidah in Southern Benin. The aim of study was to characterize and categorize the farms in order to identify the means by which this activity could be improved and made socially, economically and ecologically more sustainable. The production was characterized by a weakness of farming rotations, the use of chemical and organic fertilizers as well as the use of chemical pesticides in the pest and disease control. Farmers' annual earning varied widely with an average of 917,646 XOF. About one quarter of the farmers earn less than the minimum wage. By combining Multiple Correspondence Analysis (MCA) and Hierarchical Cluster Analysis (HCA), we identified seven types of farmers. Development Project focusing on sustainability improvement of the production and income of the producers could target the first five categories of market-gardeners who experience more hardship (difficult access to land, challenges with irrigation and pests and diseases control). These farms depend mostly on chemical pesticide. Authorities especially at the municipal level should help with a better land allocation, particularly for farmers in Cotonou and Sèmè-kpodji. Continuing education and awareness raising efforts by Extension services towards producers about health and environmental hazards of synthetic pesticides could improve sustainability of vegetable growing in Southern-Benin. (Résumé d'auteur
Effects of stitching on delamination of satin weave carbon-epoxy laminates under mode I, mode II and mixed-mode I/II loadings
The objective of the present study is to characterize the effect of modified chain stitching on the delamination growth under mixed-mode I/II loading conditions. Delamination toughness under mode I is experimentally determined, for unstitched and stitched laminates, by using untabbed and tabbed double cantilever beam (TDCB) tests. The effect of the reinforcing tabs on mode I toughness is investigated. Stitching improves the energy release rate (ERR) up to 4 times in mode I. Mode II delamination toughness is evaluated in end-notched flexure (ENF) tests. Different geometries of stitched specimens are tested. Crack propagation occurs without any failure of stitching yarns. The final crack length attains the mid-span or it stops before and the specimen breaks in bending. The ERR is initially low and gradually increases with crack length to very high values. The mixedmode delamination behaviour is investigated using a mixed-mode bending (MMB) test. For unstitched specimens, a simple mixed-mode criterion is identified. For stitched specimens, stitching yarns do not break during 25% of mode I ratio tests and the ERR increase is relatively small compared to unstitched values. For 70% and 50% of mode I ratios, failures of yarns are observed during crack propagation and tests are able to capture correctly the effect of the stitching: it clearly improves the ERR for these two mixed modes, as much as threefold
Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs
When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought
Titania-doped tantala/silica coatings for gravitational-wave detection
Reducing thermal noise from optical coatings is crucial to reaching the required sensitivity in next generation interferometric gravitational-wave detectors. Here we show that adding TiO2 to Ta2O5 in Ta2O5/SiO2 coatings reduces the internal friction and in addition present data confirming it reduces thermal noise. We also show that TiO2-doped Ta2O5/SiO2 coatings are close to satisfying the optical absorption requirements of second generation gravitational-wave detectors
Macroscopic coherence of a single exciton state in a polydiacetylene organic quantum wire
We show that a single exciton state in an individual ordered conjugated
polymer chain exhibits macroscopic quantum spatial coherence reaching tens of
microns, limited by the chain length. The spatial coherence of the k=0 exciton
state is demonstrated by selecting two spatially separated emitting regions of
the chain and observing their interference.Comment: 12 pages with 2 figure
Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome: Insights from the LUNG SAFE Study
Abstract
RATIONALE:
Noninvasive ventilation (NIV) is increasingly used in patients with acute respiratory distress syndrome (ARDS). The evidence supporting NIV use in patients with ARDS remains relatively sparse.
OBJECTIVES:
To determine whether, during NIV, the categorization of ARDS severity based on the PaO2/FiO2 Berlin criteria is useful.
METHODS:
The LUNG SAFE (Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure) study described the management of patients with ARDS. This substudy examines the current practice of NIV use in ARDS, the utility of the PaO2/FiO2 ratio in classifying patients receiving NIV, and the impact of NIV on outcome.
MEASUREMENTS AND MAIN RESULTS:
Of 2,813 patients with ARDS, 436 (15.5%) were managed with NIV on Days 1 and 2 following fulfillment of diagnostic criteria. Classification of ARDS severity based on PaO2/FiO2 ratio was associated with an increase in intensity of ventilatory support, NIV failure, and intensive care unit (ICU) mortality. NIV failure occurred in 22.2% of mild, 42.3% of moderate, and 47.1% of patients with severe ARDS. Hospital mortality in patients with NIV success and failure was 16.1% and 45.4%, respectively. NIV use was independently associated with increased ICU (hazard ratio, 1.446 [95% confidence interval, 1.159-1.805]), but not hospital, mortality. In a propensity matched analysis, ICU mortality was higher in NIV than invasively ventilated patients with a PaO2/FiO2 lower than 150 mm Hg.
CONCLUSIONS:
NIV was used in 15% of patients with ARDS, irrespective of severity category. NIV seems to be associated with higher ICU mortality in patients with a PaO2/FiO2 lower than 150 mm Hg. Clinical trial registered with www.clinicaltrials.gov (NCT 02010073)
- …
