534 research outputs found
Astrophysics in S.Co.P.E
S.Co.P.E. is one of the four projects funded by the Italian Government in
order to provide Southern Italy with a distributed computing infrastructure for
fundamental science. Beside being aimed at building the infrastructure,
S.Co.P.E. is also actively pursuing research in several areas among which
astrophysics and observational cosmology. We shortly summarize the most
significant results obtained in the first two years of the project and related
to the development of middleware and Data Mining tools for the Virtual
Observatory
Morfologia de machos e fêmeas de Euglossa annectans Dresler 1982 (Hymenoptera, Apidae, Euglossini).
Foram coletados dados de morfometria de machos e fêmeas de Euglossa annectans em condições de laboratório, de um grupo de células separado artificialmente, a partir de um ninho alojado espontaneamente em caixa racional de abelhas sem ferrão
Iris: an Extensible Application for Building and Analyzing Spectral Energy Distributions
Iris is an extensible application that provides astronomers with a
user-friendly interface capable of ingesting broad-band data from many
different sources in order to build, explore, and model spectral energy
distributions (SEDs). Iris takes advantage of the standards defined by the
International Virtual Observatory Alliance, but hides the technicalities of
such standards by implementing different layers of abstraction on top of them.
Such intermediate layers provide hooks that users and developers can exploit in
order to extend the capabilities provided by Iris. For instance, custom Python
models can be combined in arbitrary ways with the Iris built-in models or with
other custom functions. As such, Iris offers a platform for the development and
integration of SED data, services, and applications, either from the user's
system or from the web. In this paper we describe the built-in features
provided by Iris for building and analyzing SEDs. We also explore in some
detail the Iris framework and software development kit, showing how astronomers
and software developers can plug their code into an integrated SED analysis
environment.Comment: 18 pages, 8 figures, accepted for publication in Astronomy &
Computin
Mind-body relationships in elite apnea divers during breath holding: a study of autonomic responses to acute hypoxemia
The mental control of ventilation with all associated phenomena, from relaxation to modulation of emotions, from cardiovascular to metabolic adaptations, constitutes a psychophysiological condition characterizing voluntary breath-holding (BH). BH induces several autonomic responses, involving both autonomic cardiovascular and cutaneous pathways, whose characterization is the main aim of this study. Electrocardiogram and skin conductance (SC) recordings were collected from 14 elite divers during three conditions: free breathing (FB), normoxic phase of BH (NPBH) and hypoxic phase of BH (HPBH). Thus, we compared a set of features describing signal dynamics between the three experimental conditions: from heart rate variability (HRV) features (in time and frequency-domains and by using nonlinear methods) to rate and shape of spontaneous SC responses (SCRs). The main result of the study rises by applying a Factor Analysis to the subset of features significantly changed in the two BH phases. Indeed, the Factor Analysis allowed to uncover the structure of latent factors which modeled the autonomic response: a factor describing the autonomic balance (AB), one the information increase rate (IIR), and a latter the central nervous system driver (CNSD). The BH did not disrupt the FB factorial structure, and only few features moved among factors. Factor Analysis indicates that during BH (1) only the SC described the emotional output, (2) the sympathetic tone on heart did not change, (3) the dynamics of interbeats intervals showed an increase of long-range correlation that anticipates the HPBH, followed by a drop to a random behavior. In conclusion, data show that the autonomic control on heart rate and SC are differentially modulated during BH, which could be related to a more pronounced effect on emotional control induced by the mental training to BH
The Lepidopteran endoribonuclease-U domain protein P102 displays dramatically reduced enzymatic activity and forms functional amyloids
Hemocytes of Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae produce a protein, P102, with a putative endoribonuclease-U domain. In previous works we have shown that P102 is involved in Lepidopteran immune response by forming amyloid fibrils, which catalyze and localize melanin deposition around non-self intruders during encapsulation, preventing harmful systemic spreading. Here we demonstrate that P102 belongs to a new class of proteins that, at least in Lepidoptera, has a diminished endoribonuclease-U activity probably due to the lack of two out of five catalytically essential residues. We show that the P102 homolog from Trichoplusia ni (Lepidoptera, Noctuidae) displays catalytic site residues identical to P102, a residual endoribonuclease-U activity and the ability to form functional amyloids. On the basis of these results as well as sequence and structural analyses, we hypothesize that all the Lepidoptera endoribonuclease-U orthologs with catalytic site residues identical to P102 form a subfamily with similar function
Data Deluge in Astrophysics: Photometric Redshifts as a Template Use Case
Astronomy has entered the big data era and Machine Learning based methods
have found widespread use in a large variety of astronomical applications. This
is demonstrated by the recent huge increase in the number of publications
making use of this new approach. The usage of machine learning methods, however
is still far from trivial and many problems still need to be solved. Using the
evaluation of photometric redshifts as a case study, we outline the main
problems and some ongoing efforts to solve them.Comment: 13 pages, 3 figures, Springer's Communications in Computer and
Information Science (CCIS), Vol. 82
Low cardiac frequency associated with higher number of extrasistoles in a computational model of Brugada Syndrome
Nucleoside‐Driven Specificity of DNA Methyltransferase
We have studied the adenosine binding specificities of two bacterial DNA methyltransferases, Taq methyltransferase (M.TaqI), and HhaI methyltransferase (M.HhaI). While they have similar cofactor binding pocket interactions, experimental data showed different specificity for novel S-nucleobase-l-methionine cofactors (SNMs; N=guanosyl, cytidyl, uridyl). Protein dynamics corroborate the experimental data on the cofactor specificities. For M.TaqI the specificity for S-adenosyl-l-methionine (SAM) is governed by the tight binding on the nucleoside part of the cofactor, while for M.HhaI the degree of freedom of the nucleoside chain allows the acceptance of other bases. The experimental data prove catalytically productive methylation by the M.HhaI binding pocket for all the SNMs. Our results suggest a new route for successful design of unnatural SNM analogues for methyltransferases as a tool for cofactor engineering.journal articl
- …
