89 research outputs found
Studying model suspensions using high resolution synchrotron X-ray microtomography
The addition of minor quantities of secondary liquids to suspensions may lead to a transition from a fluid-like structure to paste-like structure for the system. Previous studies have shown how rheological properties such as viscosity and yield stress are affected, however, qualitative visual observation on the micro-scale during both short and long term storage has yet to be achieved or reported.
This research focuses on the movement of a secondary immiscible liquid (water or saturated sucrose solution) when added to a model food system. The model food system used in this study is a suspension of sucrose particles in a continuous oil phase to better understand the interactions between the particles and the liquid phases present. This was accomplished using dynamic X-ray computer tomography to study the behaviour of the sample. This non-destructive approach allowed the movement of the secondary liquid as well as the solid particles from the bulk suspension to be monitored through a time lapse of scans. This was achieved by observing the changes in the grey scale range of the droplet with time, which was then correlated to the uptake and movement of sucrose into the secondary liquid using an innovative method. This movement was due to the hydrophilicity and solubility of sucrose with gravity/sedimentation playing a minimal role
X-ray microtomography to study the microstructure of cream cheese-type products.
In this work, the imaging x-ray microtomography technique, new to the field of food science, was used for the analysis of fat microstructure and quantification of the fat present in cream cheese-type products. Five different types of commercially produced cheeses, chosen for their variability of texture, were used for this experiment: sample A, sample B, sample C, sample D, and sample E. Appropriate quantitative 3-dimensional parameters describing the fat structure were calculated (e.g., the geometric parameter percentage of fat volume was calculated for each image as a representation of the percentage of total fat content within the sample). The dynamic-mechanical properties of these samples were also studied using a controlled-strain rotational rheometer. Storage modulus and loss modulus were determined in a frequency range of 0.01 to 10 Hz. The strain value was obtained by preliminary strain sweep oscillatory trials to determine the linear viscoelastic region of the cream cheese-type products. Statistical correlation analysis was performed on the results to help identify any microstructural-mechanical structure relationships. The results from this study show that microtomography is a suitable technique for the microstructural analysis of fat in cream cheese-type products, as it does not only provide an accurate percentage of the volume of the fat present but can also determine its spatial distribution
White matter abnormalities in active elite adult rugby players
The recognition, diagnosis and management of mild traumatic brain injuries are difficult and confusing. It is unclear how the severity and number of injuries sustained relate to brain injuries, such as diffuse axonal injury, diffuse vascular injury and progressive neurodegeneration. Advances in neuroimaging techniques enable the investigation of neuropathologies associated with acute and long-term effects of injury. Head injuries are the most commonly reported injury seen during professional rugby. There is increased vigilance for the immediate effects of these injuries in matches, but there has been surprisingly little research investigating the longer-term effects of rugby participation. Here, we present a longitudinal observational study investigating the relationship of exposure to rugby participation and sub-acute head injuries in professional adult male and female rugby union and league players using advanced MRI. Diffusion tensor imaging and susceptibility weighted imaging was used to assess white matter structure and evidence of axonal and diffuse vascular injury. We also studied changes in brain structure over time using Jacobian Determinant statistics extracted from serial volumetric imaging. We tested 41 male and 3 female adult elite rugby players, of whom 21 attended study visits after a head injury, alongside 32 non-sporting controls, 15 non-collision-sport athletic controls and 16 longitudinally assessed controls. Eighteen rugby players participated in the longitudinal arm of the study, with a second visit at least 6 months after their first scan. Neuroimaging evidence of either axonal injury or diffuse vascular injury was present in 23% (10/44) of players. In the non-acutely injured group of rugby players, abnormalities of fractional anisotropy and other diffusion measures were seen. In contrast, non-collision-sport athletic controls were not classified as showing abnormalities. A group level contrast also showed evidence of sub-acute injury using diffusion tensor imaging in rugby players. Examination of longitudinal imaging revealed unexpected reductions in white matter volume in the elite rugby players studied. These changes were not related to self-reported head injury history or neuropsychological test scores and might indicate excess neurodegeneration in white matter tracts affected by injury. Taken together, our findings suggest an association of participation in elite adult rugby with changes in brain structure. Further well-designed large-scale studies are needed to understand the impact of both repeated sports-related head impacts and head injuries on brain structure, and to clarify whether the abnormalities we have observed are related to an increased risk of neurodegenerative disease and impaired neurocognitive function following elite rugby participation
White matter abnormalities in active elite adult rugby players
The recognition, diagnosis and management of mild traumatic brain injuries is difficult and confusing. It is unclear how the severity and number of injuries sustained relate to brain injuries such as diffuse axonal injury, diffuse vascular injury and progressive neurodegeneration. Advances in neuroimaging techniques enable the investigation of neuropathologies associated with acute and long-term effects of injury. Head injuries are the most commonly reported injury seen during professional rugby. There is increased vigilance for the immediate effects of these injuries in matches, but there has been surprisingly little research investigating the longer-term effects of rugby participation. Here we present a longitudinal observational study investigating the relationship of exposure to rugby participation and sub-acute head injuries in professional adult male and female rugby union and league players using advanced MRI. Diffusion tensor imaging and susceptibility weighted imaging was used to assess white matter structure and evidence of axonal and diffuse vascular injury. We also studied changes in brain structure over time using Jacobian Determinant statistics extracted from serial volumetric imaging. We tested 41 male and 3 female adult elite rugby players, of whom 21 attended study visits after a head injury, alongside 32 non-sporting controls, 15 non-collision-sport athletic controls and 16 longitudinally assessed controls. 18 rugby players participated in the longitudinal arm of the study, with a second visit at least 6 months after their first scan. Neuroimaging evidence of either axonal injury or diffuse vascular injury was present in 23% (10/44) of players. In the non-acutely injured group of rugby players, abnormalities of fractional anisotropy and other diffusion measures were seen. In contrast, non-collision-sport athletic controls were not classified as showing abnormalities. A group level contrast also showed evidence of sub-acute injury using diffusion tensor imaging in rugby players. Examination of longitudinal imaging revealed unexpected reductions in white matter volume in the elite rugby players studied. These changes were not related to self-reported head injury history or neuropsychological test scores and might indicate excess neurodegeneration in white matter tracts affected by injury. Taken together, our findings suggest an association of participation in elite adult rugby with changes in brain structure. Further well-designed large scale studies are needed to understand the impact of both repeated sports related head impacts and head injuries on brain structure, and to clarify whether the abnormalities we have observed are related to an increased risk of neurodegenerative disease and impaired neurocognitive function following elite rugby participation
Processing and characterization of durum wheat bread enriched with antioxidant from yellow pepper flour
The effect of the addition of yellow pepper flour on bread physico-chemical and sensorial properties was
addressed in this study. In particular, vegetable flour concentration was set at 25%; in order to optimize
the bread sensorial properties, yellow pepper flour was separately hydrated at three different water
content levels. Texture analysis were carried out on both dough and bread samples to evaluate their
firmness. Furthermore, tomographic analysis was performed on the same samples in order to provide a
more detailed view of their texture. Estimation of the glycemic response, determination of the carotenoids
content and sensory analysis of the fortified bread were also determined. Results highlighted that
the highest glycemic index was achieved in bread sample having the highest water content and that
showed the worst results in terms of texture. Among the studied samples, bread with medium hydration
level showed good structural characteristic, double anti-oxidant content compared to the control bread
(CTRL S) and the highest sensorial quality
Active elite rugby participation is associated with altered precentral cortical thickness
There is growing concern that elite rugby participation may negatively influence brain health, but the underlying mechanisms are unclear. Cortical thickness is a widely applied biomarker of grey matter structure, but there is limited research into how it may be altered in active professional rugby players. Cross-sectional MRI data from 44 active elite rugby players, including 21 assessed within 1 week of head injury, and 47 healthy controls were analysed. We investigated how active elite rugby participation with and without sub-acute traumatic brain injury influenced grey matter structure using whole cortex and region of interest cortical thickness analyses. Relationships between cortical thickness and biomarkers of traumatic brain injury, including fractional anisotropy, plasma neurofilament light and glial fibrillary acidic protein, were also examined. In whole-cortex analyses, precentral cortical thickness in the right hemisphere was lower in rugby players compared with controls, which was due to reductions in non-injured players. Post hoc region of interest analyses showed non-injured rugby players had reduced cortical thickness in the inferior precentral sulcal thickness bilaterally (P = 0.005) and the left central sulcus (P = 0.037) relative to controls. In contrast, players in the sub-acute phase of mild traumatic brain injury had higher inferior precentral sulcal cortical thickness in the right hemisphere (P = 0.015). Plasma glial fibrillary acidic protein, a marker of astrocyte activation, was positively associated with right inferior precentral sulcal cortical thickness in injured rugby players (P = 0.0012). Elite rugby participation is associated with localized alterations in cortical thickness, specifically in sulcal motor regions. Sub-acute changes after mild traumatic brain injury are associated with evidence of astrocytic activation. The combination of cortical thickness and glial fibrillary acidic protein may be useful in understanding the pathophysiological relationship between sporting head injury and brain health
Neurocognitive sequelae following hippocampal and callosal lesions associated with cerebral malaria in an immune-naive adult
- …
