62 research outputs found

    Preventing foot ulceration in diabetes:systematic review and meta-analyses of RCT data

    Get PDF
    Aims/hypothesis: Foot ulceration is a serious complication for people with diabetes that results in high levels of morbidity for individuals and significant costs for health and social care systems. Nineteen systematic reviews of preventative interventions have been published, but none provides a reliable numerical summary of treatment effects. The aim of this study was to systematically review the evidence from RCTs and, where possible, conduct meta-analyses to make the best possible use of the currently available data. Methods: We conducted a systematic review and meta-analysis of RCTs of preventative interventions for foot ulceration. OVID MEDLINE and EMBASE were searched to February 2019 and the Cochrane Central Register of Controlled Trials to October 2018. RCTs of interventions to prevent foot ulcers in people with diabetes who were free from foot ulceration at trial entry were included. Two independent reviewers read the full-text articles and extracted data. The quality of trial reporting was assessed using the Cochrane Risk of Bias tool. The primary outcome of foot ulceration was summarised using pooled relative risks in meta-analyses. Results: Twenty-two RCTs of eight interventions were eligible for analysis. One trial of digital silicone devices (RR 0.07 [95% CI 0.01, 0.55]) and meta-analyses of dermal infrared thermometry (RR 0.41 [95% CI 0.19, 0.86]), complex interventions (RR 0.59 [95% CI 0.38, 0.90], and custom-made footwear and offloading insoles (RR 0.53 [95% CI 0.33, 0.85]) showed beneficial effects for these interventions. Conclusions/interpretation: Four interventions were identified as being effective in preventing foot ulcers in people with diabetes, but uncertainty remains about what works and who is most likely to benefit

    Differential glucocorticoid metabolism in patients with persistent versus resolving inflammatory arthritis

    Get PDF
    Introduction: Impairment in the ability of the inflamed synovium to generate cortisol has been proposed to be a factor in the persistence and severity of inflammatory arthritis. In the inflamed synovium, cortisol is generated from cortisone by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. The objective of this study was to determine the role of endogenous glucocorticoid metabolism in the development of persistent inflammatory arthritis. Methods: Urine samples were collected from patients with early arthritis (symptoms ≤12 weeks duration) whose final diagnostic outcomes were established after clinical follow-up and from patients with established rheumatoid arthritis (RA). All patients were free of disease-modifying anti-rheumatic drugs at the time of sample collection. Systemic measures of glucocorticoid metabolism were assessed in the urine samples by gas chromatography/mass spectrometry. Clinical data including CRP and ESR were also collected at baseline. Results: Systemic measures of 11β-HSD1 activity were significantly higher in patients with early arthritis whose disease went on to persist, and also in the subgroup of patients with persistent disease who developed RA, when compared with patients whose synovitis resolved over time. We observed a significant positive correlation between systemic 11β-HSD1 activity and ESR/CRP in patients with established RA but not in any of the early arthritis patients group. Conclusions: The present study demonstrates that patients with a new onset of synovitis whose disease subsequently resolved had significantly lower levels of systemic 11β-HSD1 activity when compared with patients whose synovitis developed into RA or other forms of persistent arthritis. Low absolute levels of 11β-HSD1 activity do not therefore appear to be a major contributor to the development of RA and it is possible that a high total body 11β-HSD1 activity during early arthritis may reduce the probability of disease resolution

    11β-HSD1 contributes to age-related metabolic decline in male mice

    Get PDF
    The aged phenotype shares several metabolic similarities with that of circulatory glucocorticoid excess (Cushing’s syndrome), including type 2 diabetes, obesity, hypertension, and myopathy. We hypothesise that local tissue generation of glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts 11-dehydrocorticosterone to active corticosterone in rodents (corticosterone to cortisol in man), plays a role in driving age-related chronic disease. In this study, we have examined the impact of ageing on glucocorticoid metabolism, insulin tolerance, adiposity, muscle strength, and blood pressure in both wildtype (WT) and transgenic male mice with a global deletion of 11β-HSD1 (11β-HSD1−/−) following 4 months high-fat feeding. We found that high fat-fed 11β-HSD1−/− mice were protected from age-related glucose intolerance and hyperinsulinemia when compared to age/diet-matched WTs. By contrast, aged 11β-HSD1−/− mice were not protected from the onset of sarcopenia observed in the aged WTs. Young 11β-HSD1−/− mice were partially protected from diet-induced obesity; however, this partial protection was lost with age. Despite greater overall obesity, the aged 11β-HSD1−/− animals stored fat in more metabolically safer adipose depots as compared to the aged WTs. Serum analysis revealed both WT and 11β-HSD1−/− mice had an age-related increase in morning corticosterone. Surprisingly, 11β-HSD1 oxo-reductase activity in the liver and skeletal muscle was unchanged with age in WT mice and decreased in gonadal adipose tissue. These data suggest that deletion of 11β-HSD1 in high fat-fed, but not chow-fed, male mice protects from age-related insulin resistance and supports a metabolically favourable fat distribution

    Comparative phylogeography in the genomic age: Opportunities and challenges

    Get PDF
    Aim: We consider the opportunities and challenges comparative phylogeography (CP) faces in the genomic age to determine: (1) how we can maximise the potential of big CP analyses to advance biogeographic and macroevolutionary theory; and (2) what we can, and will struggle, to achieve using CP approaches in this era of genomics. Location: World-wide. Taxon: All. Methods: We review the literature to discuss the future of CP - particularly examining CP insights enabled by genomics that may not be possible for single species and/or few molecular markers. We focus on how geography and species' natural histories interact to yield congruent and incongruent patterns of neutral and adaptive processes in the context of both historical and recent rapid evolution. We also consider how CP genomic data are being stored, accessed, and shared. Results: With the widespread availability of genomic data, the shift from a single- to a multi-locus perspective is resulting in detailed historical inferences and an improved statistical rigour in phylogeography. However, the time and effort required for collecting co-distributed species and accruing species-specific ecological knowledge continue to be limiting factors. Bioinformatic skills and user-friendly analytical tools, alongside the computational infrastructure required for big data, can also be limiting. Main conclusions: Over the last ~35 years, there has been much progress in understanding how intraspecific genetic variation is geographically distributed. The next major steps in CP will be to incorporate evolutionary processes and community perspectives to account for patterns and responses among co-distributed species and across temporal scales, including those related to anthropogenic change. However, the full potential of CP will only be realised if we employ robust study designs within a sound comparative framework. We advocate that phylogeographers adopt such consistent approaches to enhance future comparisons to present-day findings.fals

    Female partners of patients after surgical prostate cancer treatment: interactions with physicians and support needs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few studies have explored the women's experiences as a result of a partners' diagnosis of prostate cancer. This study begins to explore women's interactions with physicians (primary care and urologist) and the support needs associated with the diagnosis and treatment of their partners' prostate cancer.</p> <p>Methods</p> <p>Two focus groups (n = 14) of women whose partners were diagnosed with prostate cancer (diagnoses' 1 - 18 months). A trained facilitator used open-ended questions to explore ideas. The framework approach was used to analyze the transcripts.</p> <p>Results</p> <p>Three main themes emerged: 1. <b>More support</b>. Validation and information is needed for women including emotional support and opportunities to share experiences. 2. <b>Role of the physician</b>. The transfer of care once specialized treatment is no longer needed remained poorly defined, which increased confusion and feelings of abandonment related to the role of the primary physician. 3. <b>Partners' relationship changes</b>. Men became more dependent on their partners for support and to act as the primary communicator and caregiver.</p> <p>Conclusions</p> <p>Additional research is needed in this field to confirm the importance of training primary care physicians to consider holistic treatment approaches that recognize the partner and family needs as important in the complete physical and emotional healing of their patients.</p

    Structure of Metaphase Chromosomes: A Role for Effects of Macromolecular Crowding

    Get PDF
    In metaphase chromosomes, chromatin is compacted to a concentration of several hundred mg/ml by mechanisms which remain elusive. Effects mediated by the ionic environment are considered most frequently because mono- and di-valent cations cause polynucleosome chains to form compact ∼30-nm diameter fibres in vitro, but this conformation is not detected in chromosomes in situ. A further unconsidered factor is predicted to influence the compaction of chromosomes, namely the forces which arise from crowding by macromolecules in the surrounding cytoplasm whose measured concentration is 100–200 mg/ml. To mimic these conditions, chromosomes were released from mitotic CHO cells in solutions containing an inert volume-occupying macromolecule (8 kDa polyethylene glycol, 10.5 kDa dextran, or 70 kDa Ficoll) in 100 µM K-Hepes buffer, with contaminating cations at only low micromolar concentrations. Optical and electron microscopy showed that these chromosomes conserved their characteristic structure and compaction, and their volume varied inversely with the concentration of a crowding macromolecule. They showed a canonical nucleosomal structure and contained the characteristic proteins topoisomerase IIα and the condensin subunit SMC2. These observations, together with evidence that the cytoplasm is crowded in vivo, suggest that macromolecular crowding effects should be considered a significant and perhaps major factor in compacting chromosomes. This model may explain why ∼30-nm fibres characteristic of cation-mediated compaction are not seen in chromosomes in situ. Considering that crowding by cytoplasmic macromolecules maintains the compaction of bacterial chromosomes and has been proposed to form the liquid crystalline chromosomes of dinoflagellates, a crowded environment may be an essential characteristic of all genomes

    Cancer and fertility preservation: international recommendations from an expert meeting

    Get PDF

    Laboratory review: the role of gait analysis in seniors' mobility and fall prevention

    Get PDF
    Walking is a complex motor task generally performed automatically by healthy adults. Yet, by the elderly, walking is often no longer performed automatically. Older adults require more attention for motor control while walking than younger adults. Falls, often with serious consequences, can be the result. Gait impairments are one of the biggest risk factors for falls. Several studies have identified changes in certain gait parameters as independent predictors of fall risk. Such gait changes are often too discrete to be detected by clinical observation alone. At the Basel Mobility Center, we employ the GAITRite electronic walkway system for spatial-temporal gait analysis. Although we have a large range of indications for gait analyses and several areas of clinical research, our focus is on the association between gait and cognition. Gait analysis with walking as a single-task condition alone is often insufficient to reveal underlying gait disorders present during normal, everyday activities. We use a dual-task paradigm, walking while simultaneously performing a second cognitive task, to assess the effects of divided attention on motor performance and gait control. Objective quantification of such clinically relevant gait changes is necessary to determine fall risk. Early detection of gait disorders and fall risk permits early intervention and, in the best-case scenario, fall prevention. We and others have shown that rhythmic movement training such as Jaques-Dalcroze eurhythmics, tai chi and social dancing can improve gait regularity and automaticity, thus increasing gait safety and reducing fall risk

    11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess.

    No full text
    The adverse metabolic effects of prescribed and endogenous glucocorticoid (GC) excess, Cushing syndrome, create a significant health burden. We found that tissue regeneration of GCs by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), rather than circulating delivery, is critical to developing the phenotype of GC excess; 11β-HSD1 KO mice with circulating GC excess are protected from the glucose intolerance, hyperinsulinemia, hepatic steatosis, adiposity, hypertension, myopathy, and dermal atrophy of Cushing syndrome. Whereas liver-specific 11β-HSD1 KO mice developed a full Cushingoid phenotype, adipose-specific 11β-HSD1 KO mice were protected from hepatic steatosis and circulating fatty acid excess. These data challenge our current view of GC action, demonstrating 11β-HSD1, particularly in adipose tissue, is key to the development of the adverse metabolic profile associated with circulating GC excess, offering 11β-HSD1 inhibition as a previously unidentified approach to treat Cushing syndrome
    corecore