1,611 research outputs found

    Thermal Flipping and Thermal Trapping -- New Elements in Dust Grain Dynamics

    Full text link
    Since the classical work by Purcell (1979) it has been generally accepted that most interstellar grains rotate suprathermally. Suprathermally rotating grains would be nearly perfectly aligned with the magnetic field by paramagnetic dissipation if not for ``crossovers'', intervals of low angular velocity resulting from reversals of the torques responsible for suprathermal rotation; during crossovers grains are susceptible to disalignment by random impulses. Lazarian and Draine (1997) identified thermal fluctuations within grain material as an important component of crossover dynamics. For grains of size less than 0.1 micron, these fluctuations ensure good correlation of angular momentum before and after crossover resulting in good alignment, in accord with observations of starlight polarization. In the present paper we discuss two new processes which are important for the dynamics of grains with a<0.1 micron. The first -- ``thermal flipping'' -- offers a way for small grains to bypass the period of greatly reduced angular momentum which would otherwise take place during a crossover, thereby enhancing the alignment of small grains. The second effect -- ``thermal trapping'' -- arises when thermal flipping becomes rapid enough to prevent the systematic torques from driving the grain to suprathermal rotation. This effect acts to reduce the alignment of small grains. The observed variation of grain alignment with grain size would then result from a combination of the thermal flipping process -- which suppresses suprathermal rotation of small grains -- and due to molecular hydrogen formation and starlight -- which drive large grains to suprathermal rotation rates.Comment: 16 pages, 2 figures, submitted ApJ

    Radiative torque alignment: Essential Physical Processes

    Full text link
    We study the physical processes that affect the alignment of grains subject to radiative torques (RATs). To describe the action of RATs, we use the analytical model (AMO) of RATs introduced in Paper I. We focus our discussion on the alignment by anisotropic radiation flux with respect to magnetic field, which defines the axis of grain Larmor precession. Such an alignment does not invoke paramagnetic dissipation (i.e. Davis-Greenstein mechanism), but, nevertheless, grains tend to be aligned with long axes perpendicular to the magnetic field. When we account for thermal fluctuations within grain material, we show that for grains, which are characterized by a triaxial ellipsoid of inertia, the zero-JJ attractor point obtained in our earlier study develops into a low-JJ attractor point. We study effects of stochastic gaseous bombardment and show that gaseous bombardment can drive grains from low-JJ to high-JJ attractor points in cases when the high-JJ attractor points are present. As the alignment of grain axes with respect to angular momentum is higher for higher values of JJ, counter-intuitively, gaseous bombardment can increase the degree of grain alignment in respect to the magnetic field. We also study the effects of torques induced by H2_2 formation and show that they can change the value of angular momentum at high-JJ attractor point, but marginally affect the value of angular momentum at low-JJ attractor points. We compare the AMO results with those obtained using the direct numerical calculations of RATs acting upon irregular grains and validate the use of the AMO for realistic situations of RAT alignment.Comment: 31 pages. MNRAS 2007, in press, typos are corrected

    Electric dipole moments and disalignment of interstellar dust grains

    Full text link
    The degree to which interstellar grains align with respect to the interstellar magnetic field depends on disaligning as well as aligning mechanisms. For decades, it was assumed that disalignment was due primarily to the random angular impulses a grain receives when colliding with gas-phase atoms. Recently, a new disalignment mechanism has been considered, which may be very potent for a grain that has a time-varying electric dipole moment and drifts across the magnetic field. We provide quantitative estimates of the disalignment times for silicate grains with size > approximately 0.1 micron. These appear to be shorter than the time-scale for alignment by radiative torques, unless the grains contain superparamagnetic inclusions.Comment: 12 pages, 9 figures, submitted to MNRA

    Diffusion Processes in Turbulent Magnetic Fields

    Full text link
    We study of the effect of turbulence on diffusion processes within magnetized medium. While we exemplify our treatment with heat transfer processes, our results are quite general and are applicable to different processes, e.g. diffusion of heavy elements. Our treatment is also applicable to describing the diffusion of cosmic rays arising from magnetic field wandering. In particular, we find that when the energy injection velocity is smaller than the Alfven speed the heat transfer is partially suppressed, while in the opposite regime the effects of turbulence depend on the intensity of driving. In fact, the scale lAl_A at which the turbulent velocity is equal the Alfven velocity is a new important parameter. When the electron mean free path λ\lambda is larger than lAl_A, the stronger the the turbulence, the lower thermal conductivity by electrons is. The turbulent motions, however, induces their own advective transport, that can provide effective diffusivity. For clusters of galaxies, we find that the turbulence is the most important agent for heat transfer. We also show that the domain of applicability of the subdiffusion concept is rather limited.Comment: 3 figures, 11 pages, to be published in AIP volume of "Turbulence and Non-linear Processes in Astrophysical Plasmas

    Radiative torques alignment in the presence of pinwheel torques

    Full text link
    We study the alignment of grains subject to both radiative torques and pinwheel torques while accounting for thermal flipping of grains. By pinwheel torques we refer to all systematic torques that are fixed in grain body axes, including the radiative torques arising from scattering and absorption of isotropic radiation. We discuss new types of pinwheel torques, which are systematic torques arising from infrared emission and torques arising from the interaction of grains with ions and electrons in hot plasma. We show that both types of torques are long-lived, i.e. may exist longer than gaseous damping time. We compare these torques with the torques introduced by E. Purcell, namely, torques due to H2_2 formation, the variation of accommodation coefficient for gaseous collisions and photoelectric emission. Furthermore, we revise the Lazarian & Draine model for grain thermal flipping. We calculate mean flipping timescale induced by Barnett and nuclear relaxation for both paramagnetic and superparamagnetic grains, in the presence of stochastic torques associated with pinwheel torques, e.g. the stochastic torques arising from H2_2 formation, and gas bombardment. We show that the combined effect of internal relaxation and stochastic torques can result in fast flipping for sufficiently small grains and, because of this, they get thermally trapped, i.e. rotate thermally in spite of the presence of pinwheel torques. For sufficiently large grains, we show that the pinwheel torques can increase the degree of grain alignment achievable with the radiative torques by increasing the magnitude of the angular momentum of low attractor points and/or by driving grains to new high attractor points.Comment: 23 pages and 15 figures emulated ApJ style. Thermal flipping and trapping revised; paper accepted to Ap

    Interstellar Sonic and Alfv\'enic Mach Numbers and the Tsallis Distribution

    Full text link
    In an effort to characterize the Mach numbers of ISM magnetohydrodynamic (MHD) turbulence, we study the probability distribution functions (PDFs) of patial increments of density, velocity, and magnetic field for fourteen ideal isothermal MHD simulations at resolution 512^3. In particular, we fit the PDFs using the Tsallis function and study the dependency of fit parameters on the compressibility and magnetization of the gas. We find that the Tsallis function fits PDFs of MHD turbulence well, with fit parameters showing sensitivities to the sonic and Alfven Mach numbers. For 3D density, column density, and position-position-velocity (PPV) data we find that the amplitude and width of the PDFs shows a dependency on the sonic Mach number. We also find the width of the PDF is sensitive to global Alfvenic Mach number especially in cases where the sonic number is high. These dependencies are also found for mock observational cases, where cloud-like boundary conditions, smoothing, and noise are introduced. The ability of Tsallis statistics to characterize sonic and Alfvenic Mach numbers of simulated ISM turbulence point to it being a useful tool in the analysis of the observed ISM, especially when used simultaneously with other statistical techniques.Comment: 20 pages, 16 figures, ApJ submitte

    Astrophysical Implications of Turbulent Reconnection: from cosmic rays to star formation

    Full text link
    Turbulent reconnection allows fast magnetic reconnection of astrophysical magnetic fields. This entails numerous astrophysical implications and opens new ways to approach long standing problems. I briefly discuss a model of turbulent reconnection within which the stochasticity of 3D magnetic field enables rapid reconnection through both allowing multiple reconnection events to take place simultaneously and by restricting the extension of current sheets. In fully ionized gas the model in Lazarian and Vishniac 99 predicts reconnection rates that depend only on the intensity of turbulence. In partially ionized gas a modification of the original model in Lazarian, Vishniac and Cho 04 predicts the reconnection rates that, apart from the turbulence intensity depend on the degree of ionization. In both cases the reconnection may be slow and fast depending on the level of turbulence in the system. As the result, the reconnection gets bursty, which provides a possible explanation to Solar flares and possibly to gamma ray busts. The implications of the turbulent reconnection model have not been yet studied in sufficient detail. I discuss first order Fermi acceleration of cosmic ray that takes place as the oppositely directed magnetic fluxes move together. This acceleration would work in conjunction with the second order Fermi acceleration that is caused by turbulence in the reconnection region. In partially ionized gas the stochastic reconnection enables fast removal of magnetic flux from star forming molecular clouds.Comment: 12 pages, 3 figures, invited review for "Magnetic Fields in the Universe: from laboratory and stars to Primordial Structure
    corecore