2,043 research outputs found
What is equality of opportunity in education?
There is widespread disagreement about what equality of opportunity in education requires. For some it is that each child is legally permitted to go to school. For others it is that each child receives the same educational resources. Further interpretations abound. This fact presents a problem: when politicians or academics claim they are in favour of equality of opportunity in education, it is unclear what they mean and debate is hindered by mutual misunderstanding. In this article, I introduce a framework to ameliorate this problem. More specifically, I develop an important but neglected framework for the concept of equality of opportunity and apply it to examine particular conceptions of equality of opportunity in education. In doing this, I hope to produce a piece of applied conceptual analysis that can both help clarify existing positions within the equality of opportunity in education debate and allow those seeking to produce new positions to express them more clearly
Recommended from our members
Astrocyte responses to dorsal-root ganglia in 3-dimensional co-culture
Nanoscale intermittent contact-scanning electrochemical microscopy
A major theme in scanning electrochemical microscopy (SECM) is a methodology for nanoscale imaging with distance control and positional feedback of the tip. We report the expansion of intermittent contact (IC)-SECM to the nanoscale, using disk-type Pt nanoelectrodes prepared using the laser-puller sealing method. The Pt was exposed using a focused ion beam milling procedure to cut the end of the electrode to a well-defined glass sheath radius, which could also be used to reshape the tips to reduce the size of the glass sheath. This produced nanoelectrodes that were slightly recessed, which was optimal for IC-SECM on the nanoscale, as it served to protect the active part of the tip. A combination of finite element method simulations, steady-state voltammetry and scanning electron microscopy for the measurement of critical dimensions, was used to estimate Pt recession depth. With this knowledge, the tip-substrate alignment could be further estimated by tip approach curve measurements. IC-SECM has been implemented by using a piezo-bender actuator for the detection of damping of the oscillation amplitude of the tip, when IC occurs, which was used as a tip-position feedback mechanism. The piezo-bender actuator improves significantly on the performance of our previous setup for IC-SECM, as the force acting on the sample due to the tip is greatly reduced, allowing studies with more delicate tips. The capability of IC-SECM is illustrated with studies of a model electrode (metal/glass) substrate
Future precipitation projections over central and southern Africa and the adjacent Indian Ocean: what causes the changes and the uncertainty?
Future projections of precipitation at regional scales are vital to inform climate change adaptation activities. Therefore, is it important to quantify projected changes and associated uncertainty, and understand model processes responsible. This paper addresses these challenges for Southern Africa and adjacent Indian Ocean focusing on the local wet season. Precipitation projections for the end of the 21st century indicate a pronounced dipole pattern in the CMIP5 multi-model mean. The dipole indicates future wetting (drying) to the north (south) of the climatological axis of maximum rainfall, implying a northward shift of the ITCZ and South Indian Ocean Convergence Zone, and therefore not consistent with a simple ‘wet-get-wetter’ pattern. This pattern is most pronounced in early Austral summer suggesting a later and shorter wet season over much of southern Africa. Using a decomposition method we determine physical mechanisms underlying this dipole pattern of projected change, and the associated inter-model uncertainty. The projected dipole pattern is largely associated with the dynamical component of change indicative of shifts in the location of convection. Over the Indian Ocean, this apparent northward shift in the ITCZ may reflect the response to changes in the north-south SST gradient over the Indian Ocean, consistent with a ‘warmest-get-wetter’ mechanism. Over land subtropical drying is relatively robust, particularly in the early wet season. This has contributions from dynamical shifts in location of convection, which may be related to regional SST structures in the Southern Indian Ocean, and the thermodynamic decline in relative humidity. Implications for understanding and potentially constraining uncertainty in projections are discussed
Characterization of nanopipettes
Nanopipettes are widely used in electrochemical and analytical techniques as tools for sizing, sequencing, sensing, delivery and imaging. For all of these applications, the response of a nanopipette is strongly affected by its geometry and surface chemistry. As the size of nanopipettes becomes smaller, precise geometric characterization is increasingly important, especially if nanopipette probes are to be used for quantitative studies and analysis. This contribution highlights the combination of data from voltage-scanning ion conductivity experiments, transmission electron microscopy (TEM) and finite element method (FEM) simulations to fully characterize nanopipette geometry and surface charge characteristics, with an accuracy not achievable using existing approaches. Indeed, it is shown that presently used methods for nanopipette characterization can lead to highly erroneous information on nanopipettes. The new approach to characterization further facilitates high-level quantification of the behavior of nanopipettes in electrochemical systems, as demonstrated herein for a scanning ion conductance microscope (SICM) setup
A Quadruple Knockout of lasIR and rhlIR of Pseudomonas aeruginosa PAO1 That Retains Wild-Type Twitching Motility Has Equivalent Infectivity and Persistence to PAO1 in a Mouse Model of Lung Infection
It has been widely reported that quorum-sensing incapable strains of Pseudomonas aeruginosa are less virulent than wild type strains. However, quorum sensing mutants of P. aeruginosa have been shown to develop other spontaneous mutations under prolonged culture conditions, and one of the phenotypes of P. aeruginosa that is frequently affected by this phenomenon is type IV pili-dependent motility, referred to as twitching motility. As twitching motility has been reported to be important for adhesion and colonisation, we aimed to generate a quorum-sensing knockout for which the heritage was recorded and the virulence factor production in areas unrelated to quorum sensing was known to be intact. We created a lasIRrhlIR quadruple knockout in PAO1 using a published technique that allows for the deletion of antibiotic resistance cartridges following mutagenesis, to create an unmarked QS knockout of PAO1, thereby avoiding the need for use of antibiotics in culturing, which can have subtle effects on bacterial phenotype. We phenotyped this mutant demonstrating that it produced reduced levels of protease and elastase, barely detectable levels of pyoverdin and undetectable levels of the quorum sensing signal molecules N-3-oxododecanoly-L-homoserine lactone and N-butyryl homoserine lactone, but retained full twitching motility. We then used a mouse model of acute lung infection with P. aeruginosa to demonstrate that the lasIRrhlIR knockout strain showed equal persistence to wild type parental PAO1, induced equal or greater neutrophil infiltration to the lungs, and induced similar levels of expression of inflammatory cytokines in the lungs and similar antibody responses, both in terms of magnitude and isotype. Our results suggest, in contrast to previous reports, that lack of quorum sensing alone does not significantly affect the immunogenicity, infectiveness and persistence of P. aeruginosa in a mouse model of acute lung infection. © 2013 Lazenby et al
Climate model simulation of the South Indian Ocean Convergence Zone: mean state and variability
Evaluation of climate model performance at regional scales is essential in determining confidence in simulations of present and future climate. Here we developed a process-based approach focussing on the South Indian Ocean Convergence Zone (SIOCZ), a large-scale, austral summer rainfall feature extending across southern Africa into the southwest Indian Ocean. Simulation of the SIOCZ was evaluated for the Coupled Model Intercomparison Project (CMIP5). Comparison was made between CMIP5 and Atmospheric Model Intercomparison Project (AMIP) models to diagnose sources of biases associated with coupled ocean-atmosphere processes. Models were assessed in terms of mean SIOCZ characteristics and processes of interannual variability. Most models simulated a SIOCZ feature, but were typically too zonally oriented. A systematic bias of excessive precipitation was found over southern Africa and the Indian Ocean, but not particularly along the SIOCZ. Excessive precipitation over the continent may be associated with excessively high low-level moisture flux around the Angola Low found in most models, which is almost entirely due to circulation biases in models. AMIP models represented precipitation more realistically over the Indian Ocean, implying a potential coupling error. Interannual variability in the SIOCZ was evaluated through empirical orthogonal function analysis, where results showed a clear dipole pattern, indicative of a northeast-southwest movement of the SIOCZ. The drivers of this shift were significantly related to the El Niño Southern Oscillation and the subtropical Indian Ocean dipole in observations. However, the models did not capture these teleconnections well, limiting our confidence in model representation of variability
The diet of the Tasmanian Devil, Sarcophilus harrisii, as determined from analysis of scat and stomach contents
Knowledge of the diets of carnivores is an essential precursor to understanding their role as predators in ecosystems. To date, understanding of the diet of Tasmanian Devils, Sarcophilus harrisii, is limited and based upon largely qualitative descriptions. We examined the diets of Tasmanian Devils at six sites by identifying undigested hair, bone and feathers found in their scats. These sites range across different habitat types in coastal and inland Tasmania, and encompass devil populations that are known as both free of the Devil Facial Tumour Disease (DFTD) and populations that are infected by the disease. Tasmanian Devil scats at coastal sites (n=27) contained ten species of mammal, as well as birds, fish and insects. Scats collected from inland sites (n= 17) were comprised of six mammalian species, birds and invertebrates. The most common food items were birds, Common Brushtail and Ringtail possums (Trichosurus vulpecula and Pseudocheirus
peregrinus respectively), Tasmanian Pademelons (Thylogale billardierii) and Bennett's Wallabies (Macropus ruftgriseus). O fall the scats, 61% contained only one food group, 32% contained two groups, 4% contained three food items and only one scat (2%) contained four food groups. We supplement this information with stomach contents from road-killed devils, and compare our results with those of previous studies, with a view to furthering our understanding ofthe ecology ofthe threatened Tasmanian Devil. Such information will be important for the management of wild and captive devil populations, particularly in light of DFTD
Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) as a new local dissolution kinetic probe : application to salicylic acid dissolution in aqueous solution
Dissolution kinetics of the (110) face of salicylic acid in aqueous solution is determined by hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) using a 2.5 μm diameter platinum ultramicroelectrode (UME). The method operates by translating the probe UME towards the surface at a series of positions across the crystal and inducing dissolution via the reduction of protons to hydrogen, which titrates the weak acid and promotes the dissolution reaction, but only when the UME is close to the crystal. Most importantly, as dissolution is only briefly and transiently induced at each location, the initial dissolution kinetics of an as-grown single crystal surface can be measured, rather than a surface which has undergone significant dissolution (pitting), as in other techniques. Mass transport and kinetics in the system are modelled using finite element method simulations which allows dissolution rate constants to be evaluated. It is found that the kinetics of an ‘as-grown’ crystal are much slower than for a surface that has undergone partial bulk dissolution (mimicking conventional techniques), which can be attributed to a dramatic change in surface morphology as identified by atomic force microscopy (AFM). The ‘as-grown’ (110) surface presents extended terrace structures to the solution which evidently dissolve slowly, whereas a partially dissolved surface has extensive etch features and step sites which greatly enhance dissolution kinetics. This means that crystals such as salicylic acid will show time-dependent dissolution kinetics (fluxes) that are strongly dependent on crystal history, and this needs to be taken into account to fully understand dissolution
- …
