1,959 research outputs found
Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy
This work focuses on the study of the aqueous alteration process which acted
in the main belt and produced hydrated minerals on the altered asteroids. The
aqueous alteration is particularly important for unraveling the processes
occurring during the earliest times of the Solar System history, as it can give
information both on the asteroids thermal evolution and on the localization of
water sources in the asteroid belt. We present new spectral observations in the
visible region of 80 asteroids belonging to the primitive classes C, G, F, B
and P. We combine the present observations with the visible spectra of
asteroids available in the literature for a total of 600 primitive main belt
asteroids. Our analysis shows that the aqueous alteration sequence starts from
the P-type objects, practically unaltered, and increases through the F, B, C,
and G asteroids. Around 50% of the observed C-type asteroids show absorption
features in the vis. range due to hydrated silicates, implying that more than
70% of them will have a 3 m absorption band and thus hydrated minerals on
their surfaces. The process dominates in primitive asteroids located between
2.3 and 3.1 AU, that is at smaller heliocentric distances than previously
suggested. The aqueous alteration process dominates in the 50--240 km sized
primitive asteroids, while it is less effective for bodies smaller than 50 km.
No correlation is found between the aqueous alteration process and the
asteroids albedo or orbital elements. Comparing the 0.7 m band
parameters of hydrated silicates and CM2 carbonaceous chondrites, we see that
the band center of meteorites is at longer wavelengths than that of asteroids.
This difference on center positions may be attributed to different minerals
abundances, and to the fact that CM2 available on Earth might not be
representative of the whole aqueous altered asteroids population.Comment: Icarus, accepted for publication on 28 January 2014 Manuscript pages:
38; Figures: 13 ; Tables:
Inhomogeneities on the surface of 21 Lutetia, the asteroid target of the Rosetta mission
CONTEXT: In July 2010 the ESA spacecraft Rosetta will fly-by the main belt
asteroid 21 Lutetia. Several observations of this asteroid have been so far
performed, but its surface composition and nature are still a matter of debate.
For long time Lutetia was supposed to have a metallic nature due to its high
IRAS albedo. Later on it has been suggested to have a surface composition
similar to primitive carbonaceous chondrite meteorites, while further
observations proposed a possible genetic link with more evolved enstatite
chondrite meteorites. AIMS: In order to give an important contribution in
solving the conundrum of the nature of Lutetia, in November 2008 we performed
visible spectroscopic observations of this asteroid at the Telescopio Nazionale
Galileo (TNG, La Palma, Spain). METHODS: Thirteen visible spectra have been
acquired at different rotational phases. RESULTS: We confirm the presence of a
narrow spectral feature at about 0.47-0.48 micron already found by Lazzarin et
al. (2009) on the spectra of Lutetia. We also find a spectral feature at about
0.6 micron, detected by Lazzarin et al. (2004) on one of their Lutetia's
spectra. More importantly, our spectra exhibit different spectral slopes
between 0.6 and 0.75 micron and, in particular, we found that up to 20% of the
Lutetia surface could have flatter spectra. CONCLUSIONS: We detected a
variation of the spectral slopes at different rotational phases that could be
interpreted as possibly due to differences in the chemical/mineralogical
composition, as well as to inhomogeneities of the structure of the Lutetia's
surface (e.g., the presence of craters or albedo spots) in the southern
hemisphere.Comment: 3 pages, 2 figures. Accepted for publication in Astronomy and
Astrophysics. Updated on 25 March 2010
The triaxial ellipsoid dimensions, rotational pole, and bulk density of ESA Rosetta target asteroid (21) Lutetia
We seek the best size estimates of the asteroid (21) Lutetia, the direction
of its spin axis, and its bulk density, assuming its shape is well described by
a smooth featureless triaxial ellipsoid, and to evaluate the deviations from
this assumption. Methods. We derive these quantities from the outlines of the
asteroid in 307 images of its resolved apparent disk obtained with adaptive
optics (AO) at Keck II and VLT, and combine these with recent mass
determinations to estimate a bulk density. Our best triaxial ellipsoid
diameters for Lutetia, based on our AO images alone, are a x b x c = 132 x 101
x 93 km, with uncertainties of 4 x 3 x 13 km including estimated systematics,
with a rotational pole within 5 deg. of ECJ2000 [long,lat] = [45, -7], or
EQJ2000 [RA, DEC] = [44, +9]. The AO model fit itself has internal precisions
of 1 x 1 x 8 km, but it is evident, both from this model derived from limited
viewing aspects and the radius vector model given in a companion paper, that
Lutetia has significant departures from an idealized ellipsoid. In particular,
the long axis may be overestimated from the AO images alone by about 10 km.
Therefore, we combine the best aspects of the radius vector and ellipsoid model
into a hybrid ellipsoid model, as our final result, of 124 +/- 5 x 101 +/- 4 x
93 +/- 13 km that can be used to estimate volumes, sizes, and projected areas.
The adopted pole position is within 5 deg. of [long, lat] = [52, -6] or[RA DEC]
= [52, +12]. Using two separately determined masses and the volume of our
hybrid model, we estimate a density of 3.5 +/- 1.1 or 4.3 +/- 0.8 g cm-3 . From
the density evidence alone, we argue that this favors an enstatite-chondrite
composition, although other compositions are formally allowed at the extremes
(low-porosity CV/CO carbonaceous chondrite or high-porosity metallic). We
discuss this in the context of other evidence.Comment: 9 pages, 8 figures, 5 tables, submitted to Astronomy and Astrophysic
Highlights on HIV eradication in 2013
Almost 20 years after the introduction of HAART,
scientific community, doctors and patients are still
struggling with the absence of effective strategies aimed
at eradicating HIV infection, or at preventing it through
a vaccin
Physical Investigation of the Potentially Hazardous Asteroid (144898) 2004 VD17
In this paper we present the observational campaign carried out at ESO NTT
and VLT in April and May 2006 to investigate the nature and the structure of
the Near Earth Object (144898) 2004 VD17. In spite of a great quantity of
dynamical information, according to which it will have a close approach with
the Earth in the next century, the physical properties of this asteroid are
largely unknown. We performed visible and near--infrared photometry and
spectroscopy, as well as polarimetric observations. Polarimetric and
spectroscopic data allowed us to classify 2004 VD17 as an E-type asteroid. A
good agreement was also found with the spectrum of the aubrite meteorite Mayo
Belwa. On the basis of the polarimetric albedo (p_v=0.45) and of photometric
data, we estimated a diameter of about 320 m and a rotational period of about 2
hours. The analysis of the results obtained by our complete survey have shown
that (144898) 2004 VD17 is a peculiar NEO, since it is close to the breakup
limits for fast rotator asteroids, as defined by Pravec and Harris (2000).
These results suggest that a more robust structure must be expected, as a
fractured monolith or a rubble pile in a "strength regime" (Holsapple 2002).Comment: 32 pages, 7 figure, paper accepted for publication in Icaru
Heating of near-Earth objects and meteoroids due to close approaches to the Sun
It is known that near-Earth objects (NEOs) during their orbital evolution may
often undergo close approaches to the Sun. Indeed it is estimated that up to
~70% of them end their orbital evolution colliding with the Sun. Starting from
the present orbital properties, it is possible to compute the most likely past
evolution for every NEO, and to trace its distance from the Sun. We find that a
large fraction of the population may have experienced in the past frequent
close approaches, and thus, as a consequence, a considerable Sun-driven
heating, not trivially correlated to the present orbits. The detailed dynamical
behaviour, the rotational and the thermal properties of NEOs determine the
exact amount of the resulting heating due to the Sun. In the present paper we
discuss the general features of the process, providing estimates of the surface
temperature reached by NEOs during their evolution. Moreover, we investigate
the effects of this process on meteor-size bodies, analyzing possible
differences with the NEO population. We also discuss some possible effects of
the heating which can be observed through remote sensing by ground-based
surveys or space missions.Comment: 8 pages, 5 figures, accepted by MNRA
Visible spectroscopy of the new ESO Large Program on trans-Neptunian objects and Centaurs: final results
A second large programme (LP) for the physical studies of TNOs and Centaurs,
started at ESO Cerro Paranal on October 2006 to obtain high-quality data, has
recently been concluded. In this paper we present the spectra of these pristine
bodies obtained in the visible range during the last two semesters of the LP.
We investigate the spectral behaviour of the TNOs and Centaurs observed, and we
analyse the spectral slopes distribution of the full data set coming from this
LP and from the literature. We computed the spectral slope for each observed
object, and searched for possible weak absorption features. A statistical
analysis was performed on a total sample of 73 TNOs and Centaurs to look for
possible correlations between dynamical classes, orbital parameters, and
spectral gradient. We obtained new spectra for 28 bodies, 15 of which were
observed for the first time. All the new presented spectra are featureless,
including 2003 AZ84, for which a faint and broad absorption band possibly
attributed to hydrated silicates on its surface has been reported. The data
confirm a wide variety of spectral behaviours, with neutral--grey to very red
gradients. An analysis of the spectral slopes available from this LP and in the
literature for a total sample of 73 Centaurs and TNOs shows that there is a
lack of very red objects in the classical population. We present the results of
the statistical analysis of the spectral slope distribution versus orbital
parameters. In particular, we confirm a strong anticorrelation between spectral
slope and orbital inclination for the classical population. A strong
correlation is also found between the spectral slope and orbital eccentricity
for resonant TNOs, with objects having higher spectral slope values with
increasing eccentricity.Comment: 11 pages, 9 figure
Dasabuvir and Ombitasvir/Paritaprevir/Ritonavir with or without Ribavirin in Patients with HIV-HCV Coinfection. Real Life Interim Analysis of an Italian Multicentre Compassionate Use Program
Background and Aims: An HCV cure is now possible in a large proportion of HIV-HCV patient. We present real life results of a compassionate use program promoted by SIMIT (Infectious and Tropical Diseases Italian Society) of Dasabuvir and Ombitasvir/Paritaprevir/Ritonavir ± Ribavirin for 12 weeks in 213 HIV-HCV genotype 1 patients. Data on efficacy and tolerability of this strategy in HIV patients have been reported until now only in 43 non cirrhotic HIV subjects
Ultraviolet and visible photometry of asteroid (21) Lutetia using the Hubble Space Telescope
The asteroid (21) Lutetia is the target of a planned close encounter by the
Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been
extensively observed by a variety of astronomical facilities. We used the
Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide
wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety
of HST filters and a ground-based visible light spectrum, we employed synthetic
photometry techniques to derive absolute fluxes for Lutetia. New results from
ground-based measurements of Lutetia's size and shape were used to convert the
absolute fluxes into albedos. We present our best model for the spectral energy
distribution of Lutetia over the wavelength range 120-800 nm. There appears to
be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than
~300 nm. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is
considerably larger than that of typical C-chondrite material (~4%). The
geometric albedo at 550 nm is 16.5 +/- 1%. Lutetia's reflectivity is not
consistent with a metal-dominated surface at infrared or radar wavelengths, and
its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed
for typical primitive, chondritic material. We derive a relatively high FUV
albedo of ~10%, a result that will be tested by observations with the Alice
spectrograph during the Rosetta flyby of Lutetia in July 2010.Comment: 14 pages, 2 tables, 8 figure
Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry
Aims. We determine the physical properties (spin state and shape) of asteroid
(21) Lutetia, target of the ESA Rosetta mission, to help in preparing for
observations during the flyby on 2010 July 10 by predicting the orientation of
Lutetia as seen from Rosetta.
Methods. We use our novel KOALA inversion algorithm to determine the physical
properties of asteroids from a combination of optical lightcurves,
disk-resolved images, and stellar occultations, although the latter are not
available for (21) Lutetia.
Results. We find the spin axis of (21) Lutetia to lie within 5 degrees of
({\lambda} = 52 deg., {\beta} = -6 deg.) in Ecliptic J2000 reference frame
(equatorial {\alpha} = 52 deg., {\delta} = +12 deg.), and determine an improved
sidereal period of 8.168 270 \pm 0.000 001 h. This pole solution implies the
southern hemisphere of Lutetia will be in "seasonal" shadow at the time of the
flyby. The apparent cross-section of Lutetia is triangular as seen "pole-on"
and more rectangular as seen "equator-on". The best-fit model suggests the
presence of several concavities. The largest of these is close to the north
pole and may be associated with large impacts.Comment: 17 pages, 5 figures, 3 tables, submitted to Astronomy and
Astrophysic
- …
